

Available online at www.sciencedirect.com

SciVerse ScienceDirect

CERAMICSINTERNATIONAL

Ceramics International 39 (2013) 1951-1956

www.elsevier.com/locate/ceramint

Effect of Yb³⁺ and Tm³⁺ concentrations on blue and NIR upconversion luminescence in Yb³⁺, Tm³⁺ co-doped CaMoO₄

Jun Ho Chung^a, Jeong Ho Ryu^{b,*}, Sang Yeop Lee^a, Suk Hyun Kang^a, Kwang Bo Shim^a

^aDepartment of Materials Science and Engineering, Hanyang University, 17 Haengdang-dong Seongdong-gu, Seoul 133-791, South Korea

^bDepartment of Materials Science and Engineering, Korea National University of Transportation, 50 Daehak-ro, Chungju-si, Chungbuk 380-702, South

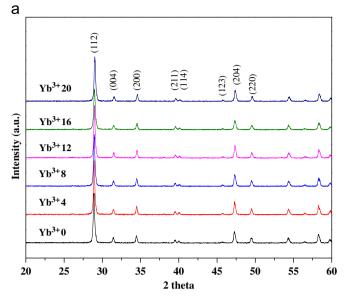
Received 9 August 2012; accepted 15 August 2012 Available online 23 August 2012

Abstract

Polycrystalline Tm^{3+}/Yb^{3+} co-doped $CaMoO_4$ UC phosphors were successfully synthesized by a complex citrate-gel method and their upconversion (UC) luminescence was investigated. Under excitation at 980 nm, Tm^{3+}/Yb^{3+} co-doped $CaMoO_4$ showed bright blue emission near 475 nm generated by the ${}^1G_4 \rightarrow {}^3H_6$ transition and strong NIR UC emission around 796 nm generated by the ${}^3H_4 \rightarrow {}^3H_6$ transition, with weak red emission near 650 nm due to the ${}^3F_2 \rightarrow {}^3H_6$ transition. The optimum doping concentrations of Tm^{3+} and Yb^{3+} for the highest UC luminescence were investigated, and the related UC mechanism of Tm^{3+}/Yb^{3+} co-doped $CaMoO_4$ depending on pump power was studied in detail.

© 2012 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: Tm³⁺/Yb³⁺ co-doped CaMoO₄; Upconversion (UC) luminescence; Upconversion mechanism


1. Introduction

In recent years, rare-earth (RE) doped luminescent materials have received extensive attention for their potential applications such as phosphors [1,2], solar cells [3], flatpanel displays [4,5], scintillators [6], and solid state lasers [7]. Among them, UC luminescence from the near-infrared (NIR) region to the visible region, which can convert from low energy to higher energy radiation via multiple absorption or energy transfer, has been actively studied [8,9] due to their applications for biology and biomedicine such as fluorescent labels and biological probes for investigation or sensitive detection of biomolecules [10]. Trivalent lanthanide ions such as Er³⁺, Tm³⁺ and Ho³⁺ are commonly used as activator ions for UC luminescence due to their abundant energy levels for radiative transition. In particular, Tm³⁺ is an excellent candidate for a UC luminescent center because of its unique properties such as blue emission around 480 nm and NIR emission near 800 nm [11,12]. However, Tm³⁺ has a very low absorption cross section around 980 nm. Therefore, a sensitizer ion is required to achieve upper level population through energy transfer. Yb³⁺ is usually chosen as the sensitizer in UC materials in order to facilitate efficient energy transfer from the sensitizer to Tm³⁺ ion because Yb³⁺ has a large absorption cross-section near 980 nm [13].

For higher efficiency UC luminescence, stable upconverting materials with low excitation thresholds are very important. Metal oxide materials are usually very stable chemically, mechanically and thermally, and could therefore be promising host matrices for light upconverting applications. However, to date, most research on RE-doped UC has focused on halides [14], glasses [15] and simple oxides [16,17].

One of the metal molybdates with a scheelite structure, $CaMoO_4$, is an excellent candidate for host matrices because it has high density (4.25 g/cm³) and more stable physical and chemical properties compared to other oxide materials [18,19]. In addition, the Mo^{6+} ions in $CaMoO_4$ matrices have strong polarization induced by large electric charges and a small radius, which consequently decreases symmetry and enhances Stark energy splitting in the crystal field [20]. We already reported blue and NIR UC luminescence in $Li^+/Tm^{3+}/Yb^{3+}$ co-doped $CaMoO_4$ [21]. However, effect of Tm^{3+} and Yb^{3+} concentrations on UC

^{*}Corresponding author. Tel.: +82 43 841 5384; fax: +82 43 841 5380. *E-mail address:* jhryu@ut.ac.kr (J.H. Ryu).

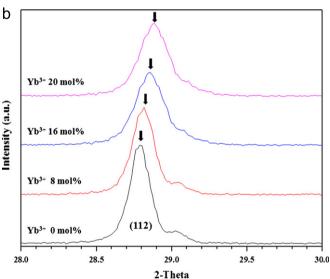


Fig. 1. (a) X-ray diffraction patterns of Tm^{3+}/Yb^{3+} co-doped CaMoO₄ upconversion phosphors with Yb^{3+} concentrations varied from 0 to 20 mol% calcined at 600 °C for 3 h. (b) Enlarged XRD patterns near $2\theta = 29^{\circ}$ for the (112) peak.

luminescence from Tm^{3+}/Yb^{3+} co-doped $CaMoO_4$ has not been studied yet. Consequently, the development of a Tm^{3+}/Yb^{3+} co-doped $CaMoO_4$ system and the establishment of a mechanism relating the efficiency of NIR to visible UC luminescence are expected to have a great impact on broadening potential application fields.

In the present work, we synthesized the strong blue emitting oxide UC phosphors through Tm³⁺/Yb³⁺ co-doping into CaMoO₄ matrix by the citrate-gel method and investigated effect of Tm³⁺/Yb³⁺ concentrations on UC luminescence from Tm³⁺/Yb³⁺ co-doped CaMoO₄. The properties of structure and photoluminescence under excitation of 980 nm were investigated. Moreover, the effects of co-doped Tm³⁺ and Yb³⁺ ions in CaMoO₄ matrix on the intensity of UV emission and luminescent mechanism are studied in detail.

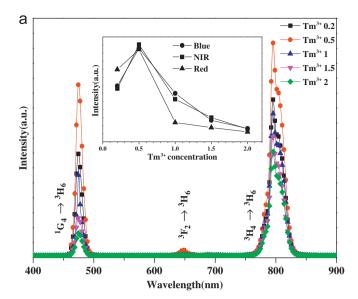
2. Experimental procedure

2.1. Starting materials

 ${\rm Tm^{3+}/Yb^{3+}}$ co-doped CaMoO₄ were prepared by a complex citrate-gel method with microwave assistance [21]. The starting materials were calcium nitrates (Ca(NO₃)₂·4H₂O, purity 99.99%, Junsei Chemical Co. Ltd., Japan), ammonium molybdate ((NH₄)₆ Mo₇O₂₄·4H₂O, 99.99%, Junsei Chemical Co., Ltd., Japan), ytterbium chloride hydrate (YbCl₃·xH₂O (x=6), 99.99%, Alfa Aesar) and thulium nitrate hydrate (Tm(NO₃)₃·xH₂O (x=5), 99.99%, Alfa Aesar), which were dissolved in DI water with citric acid (metal cation:citric acid=1:2).

2.2. Preparation and synthesis of Tm^{3+}/Yb^{3+} co-doped $CaMoO_4$

The molar ratios of the metal cations were as follows: (1-x-y) Ca²⁺ + xTm³⁺ + yYb³⁺ + Mo⁶⁺; x=0, 0.02, 0.05, 0.1, 1.5, 2 and 3; y=0, 0.04, 0.08, 0.12, 0.16 and 0.20. The solution was kept at 100 °C for 10 min under constant stirring until it became viscous. The solution was then microwave-treated for a 30-min period with an ontime duration of 2 min and an off-time duration of 1 min in ambient atmosphere until a gel was formed. The gel was heated in an oven at 250 °C for 24 h in order to remove organic substances and evaporating moisture, until an yellow dried powder was obtained. The powder was calcined at 600 °C for 3 h at ambient atmosphere.


2.3. Characterization

Phase analysis was performed using an X-ray diffractometer (XRD, Rigaku D/MAX2C, Japan, Cu- α (λ =1.5046 Å)). The UC luminescence spectra and power-dependent properties were evaluated using photoluminescence spectroscopy (PerkinElmer, LS55, USA) at room temperature with a range of wavelengths from 400 nm to 900 nm under excitation at 980 nm, and the pump power for irradiation was varied from 20 mW to 110 mW (SPEX, 1404p, France).

3. Results and discussion

3.1. Structural and optical analysis of Tm^{3+}/Yb^{3+} codoped $CaMoO_4$

Fig. 1(a) shows the XRD patterns of Tm^{3+}/Yb^{3+} codoped $CaMoO_4$ with various Yb^{3+} ion concentrations calcined at $600\,^{\circ}C$ for 3 h. We did not observe any impurities or secondary phases, implying that the charge difference induced by trivalent ions (Tm^{3+},Yb^{3+}) doped into the site of bivalent host ions (Ca^{2+}) did not affect the structural properties [22]. However, with increasing Yb^{3+} concentrations, the diffraction peaks were shifted to a higher 2θ angle, illustrating substitution of Yb^{3+} ions into Ca^{2+} ion sites and

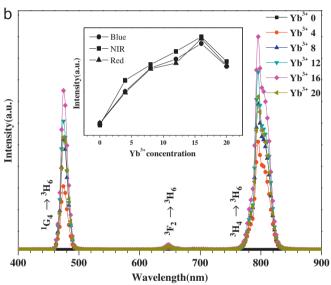


Fig. 2. Photoluminescence (PL) spectra of CaMoO₄ UC phosphors with (a) Tm³⁺ concentrations ranging from 0.2 to 2 mol% and (b) Yb³⁺ concentrations ranging from 0 to 20 mol%. The inset represents the variation in UC luminescence emission intensity with increasing (a) Tm³⁺ and (b) Yb³⁺ concentrations. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

the resultant shrinkage of lattice constants (Fig. 1b). Moreover, broadening of the diffraction peaks at (112) at increased Yb³⁺ concentrations implied that a high doping concentration of Yb³⁺ ions would lead to a decrease in crystallinity due to lattice shrinkage of the CaMoO₄ matrix.

Fig. 2 presents that (a) effect of Tm³⁺ concentration on the intensity of UC luminescence at fixed Yb³⁺ concentrations (8 mol%) and (b) effect of Yb³⁺ concentration in Tm³⁺/Yb³⁺ co-doped CaMoO₄ at a fixed Tm³⁺ concentration (0.5 mol%) within the range of 400–900 nm. As shown in Fig. 2(a), at a fixed Yb³⁺ concentration (8 mol%), the intensities of all emission regions were increased with increased Tm³⁺ concentration up to 0.5 mol%, and then decreased at concentrations over 0.5 mol%. Moreover, shown in Fig. 2(b), with increasing Yb³⁺ concentrations

up to 16 mol%, the intensities of all emission regions increased, while emission intensities declined at concentrations over 16 mol% due to a quenching effect [23]. This concentration quenching effect could be explained by the energy transfer between the nearest dopant (activator > activator or sensitizer → activator) ions. As dopant ion concentrations are increased, the distance between dopant ions shrinks, allowing non-radiative energy transfer such as exchange or multipole-multipole interactions. Based on our results, we concluded that the optimum Tm³⁺/Yb³⁺ doping concentrations were 0.5/16 mol% (summarized in the inset of Fig. 2(a) and (b)). The UC emissions in Tm³⁺/Yb³⁺ co-doped CaMoO₄ were dominated by strong blue emission and NIR emission while red emission was weaker than blue and NIR. The UC luminescent spectra of Tm³⁺/Yb³⁺ codoped CaMoO₄ consisted of the following three regions: (1) NIR emission at 796 nm, which could be attributed to the ${}^{3}\text{H}_{4} \rightarrow {}^{3}\text{H}_{6}$ transition; (2) strong blue emissions near 475 nm assigned to the ${}^{1}G_{4} \rightarrow {}^{3}H_{6}$ transition; and (3) relatively weak red emission attributed to the ${}^{3}F_{2} \rightarrow {}^{3}H_{6}$ transition around 650 nm, caused by intra 4f-4f transitions of Tm³⁺ ions [24].

Fig. 3 shows the commission internationale de l'Eclairage (CIE) chromaticity diagrams of 0.5% ${\rm Tm}^{3+}/16\%$ Yb³⁺ co-doped CaMoO₄ under laser excitation at 980 nm (fixed at 100 mW). The ${\rm Tm}^{3+}/{\rm Yb}^{3+}$ co-doped CaMoO₄ (0.5/16 mol%) sample exhibits strong blue emission visible to the naked eye under excitation at 980 nm (inset of Fig. 3). The corresponding chromaticity coordinates are x=0.116 and y=0.085, which are imbedded in the blue luminescent region of Fig. 3. Based on our results we therefore suggest that ${\rm Tm}^{3+}/{\rm Yb}^{3+}$ co-doped CaMoO₄ is an excellent candidate for blue and NIR UC phosphors.

The blue, NIR and red intensities of $CaMoO_4$ co-doped with Tm^{3+}/Yb^{3+} to 0.5/16 mol% in a logarithmic diagram as a function of pump power are plotted in Fig. 4. In the UC process, the intensity of emission is proportional to the *n*th value of the irradiation pump power [25]:

 $I \propto P'$

where n is the number of pumping photons required to excite the emitting state, I is the luminescent intensity and P is the laser pumping power. The calculated results indicated that the slopes of the n values were 2.73, 1.75 and 1.59 for blue emission, NIR emission and red emission, respectively. The n value for blue emission (${}^{1}G_{4} \rightarrow {}^{3}H_{6}$) was over 2 and close to 3, while that for NIR (${}^{3}H_{4} \rightarrow {}^{3}H_{6}$) and red emission (${}^{3}F_{2} \rightarrow {}^{3}H_{6}$) was less than 2. This result implies that the UC mechanism corresponding to blue emission can be explained by a three-photon process, while NIR and red emissions can be induced by a two-photon process [25].

3.2. Possible upconversion mechanism of Tm^{3+}/Yb^{3+} co-doped $CaMoO_4$

Based on the above results, UC mechanisms of the blue, NIR and red emissions of Tm³⁺/Yb³⁺ co-doped CaMoO₄ are schematically illustrated in Fig. 5. Under excitation at

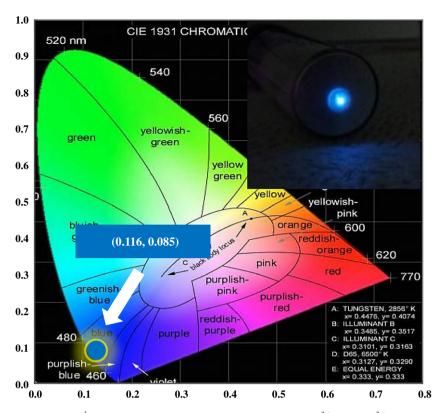


Fig. 3. The Commission Internationale de l'Éclairage (CIE) chromaticity diagrams of 0.5% Tm³+/16% Yb³+ co-doped CaMoO₄ under excitation at 980 nm. The inset photograph shows strong blue emission for the Tm³+/Yb³+ (0.5/16 mol%) co-doped CaMoO₄ sample visible to the naked eye under 980 nm excitation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

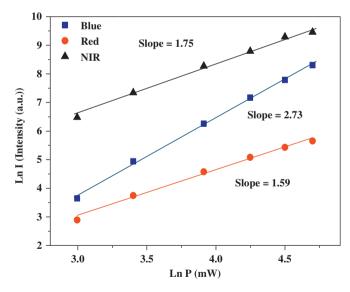


Fig. 4. Pump power dependence of upconversion emission on the working current from 20 to 110 mW at blue, NIR and red UC emission centers with fixed dopant concentrations of 0.5 mol% $\rm Tm^{3+}$ and 16 mol% $\rm Yb^{3+}$. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

980 nm, non-resonant energy transfer occurs from the ${}^2F_{5/2}$ state in the Yb³⁺ to the 3H_5 level in the Tm³⁺ and/or ground state absorption (GSA) process by a ${}^3H_6 \rightarrow {}^3H_5$ transition. The subsequent ${}^3H_5 \rightarrow {}^3F_4$ transition can be

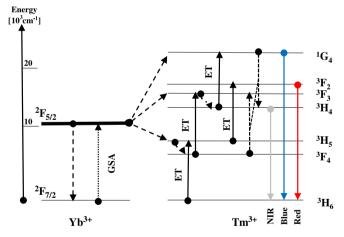


Fig. 5. Energy level diagrams of Tm³⁺ and Yb³⁺ co-doped CaMoO₄ upconversion phosphors and possible UC mechanisms under excitation at 980 nm

generated by non-radiative relaxation. The 3F_3 state can then be excited from the 3F_4 state through excited state absorption (ESA) or energy transfer upconversion (ETU) generating the metastable 3H_4 state from a non-radiative transition, which plays an important role in the generation of blue and NIR emissions [24]. For blue emission, the 3H_4 state can be further excited to the 1G_4 state through ESA or ETU. Finally, the ${}^1G_4 \rightarrow {}^3H_6$ transition generates the

blue emission center [24,26]. For NIR emission, the metastable ³H₄ state that is not excited to the high energy state in Tm³⁺, such as the ¹G₄ state, generates the NIR emission by radiative transition of ${}^{3}H_{4} \rightarrow {}^{3}H_{6}$. The red emission is assigned to the ${}^{3}F_{2} \rightarrow {}^{3}H_{6}$ transition [24,26]. The ${}^{3}F_{2}$ state can be populated only by the ${}^{3}H_{5} \rightarrow {}^{3}F_{2}$ transition by ESA and ETU processes. According to the energy gap law, the nonradiative transition of ${}^{3}H_{5} \rightarrow {}^{3}F_{4}$ dominates rather than the ${}^{3}H_{5} \rightarrow {}^{3}F_{2}$ transition because the energy gap between the ³H₅ and ³F₄ states is so small [26]. Therefore, the ³F₂ state cannot be populated well, underlying the weak red emission. Moreover, the intensity of the NIR emission is higher than that of the blue emission. This might be due to the increased population of the ³H₄ state [27]. The energy gap between ${}^{1}G_{4}$ and ${}^{3}H_{4}$ is smaller than that between ${}^{3}F_{4}$ and ${}^{3}F_{2}$ (740 cm⁻¹) [28]. Therefore, through the CR process, the energy transition of ${}^{1}G_{4} \rightarrow {}^{3}H_{4}$ can easily populate the ${}^{3}F_{3}$ state instead of the ³F₂ state. Moreover, the ³F₃ state can easily relax to the ³H₄ state because the energy gap between ³F₃ and ³H₄ is so small, which can increase the population of the ³H₄ state and the radiative transition of ${}^{3}H_{4} \rightarrow {}^{3}H_{6}$.

4. Conclusion

We synthesized and investigated UC luminescence of Tm³⁺/Yb³⁺ co-doped CaMoO₄. The Tm³⁺/Yb³⁺ co-doped CaMoO4 phosphor has strong blue and NIR luminescent centers at 475 nm (${}^{1}G_{4} \rightarrow {}^{3}H_{6}$) and 796 nm $(^{3}H_{4} \rightarrow ^{3}H_{6})$, while it has a very weak red emission center around 650 nm (${}^{3}F_{2} \rightarrow {}^{3}H_{6}$) under 980 nm excitation. The optimum doping concentrations of Tm³⁺ and Yb³⁺ for the highest intensities of UC luminescence in the CaMoO₄ system are 0.5 mol% of Tm³⁺ and 16 mol% of Yb³⁺. Power-dependent luminescent properties show that a three photon process is responsible for blue emission, while NIR and red emissions are dominated by a two-photon process. In particular, the intensity of NIR emission is higher than that of blue emission, which results from an easily populated ³H₄ state because the energy gap between ¹G₄ and ³H₄ is smaller than that between ³F₄ and ³F₂. Based on our results and analysis, we conclude that Tm³⁺/Yb³⁺ co-doped CaMoO₄ is an excellent candidate for blue and NIR UC phosphors.

Acknowledgment

The research was supported by a grant from the Academic Research Program of Korea National University of Transportation in 2012.

References

 P. Li, Q. Peng, Y. Li, Dual-mode luminescent colloidal spheres from monodisperse rare-earth fluoride nanocrystals, Advanced Materials 21 (2009) 1945–1948.

- [2] L. Wang, R. Yan, Z. Huo, L. Wang, J. Zeng, J. Bao, X. Wang, Q. Peng, Y. Li, Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles, Angewandte Chemie—International Edition 44 (2005) 6054–6057.
- [3] A. Shalav, B.S. Richards, M.A. Green, Luminescent layers for enhanced silicon solar cell performance: up-conversion, Solar Energy Materials and Solar Cells 91 (2007) 829–842.
- [4] E. Downing, L. Hesselink, J. Ralston, R. Macfarlane, A three-color, solid-state, three-dimensional display, Science 273 (1996) 1185–1189.
- [5] G.S. Maciel, A. Biswas, R. Kapoor, P.N. Prasad, Blue cooperative upconversion in Yb³⁺-doped multicomponent sol–gel-processed silica glass for three-dimensional display, Applied Physics Letters 76 (2000) 1978–1980.
- [6] G. Panayiotakis, D. Cavouras, I. Kandarakis, C. Nomicos, A study of X-ray luminescence and spectral compatibility of europiumactivated yttrium-vanadate (YVO₄:Eu) screens for medical imaging applications, Applied Physics A 62 (1996) 483–486.
- [7] F. Heine, E. Heumann, T. Danger, T. Schweizer, G. Huber, B. Chai, Green up-conversion continous-wave Er³⁺:LiYF₄ laser at roomtemperature, Applied Physics Letters 65 (1994) 383–384.
- [8] F. Vetrone, V. Mahalingam, J.A. Capobianco, Near-infrared-to-blue upconversion in colloidal BaYF₅:Tm³⁺,Yb³⁺ nanocrystals, Chemistry of Materials 21 (2009) 1847–1851.
- [9] C. Cao, W. Qin, J. Zhang, Y. Wang, G. Wang, G. Wei, P. Zhu, L. Wang, L. Jin, Up-conversion white light of Tm³⁺/Er³⁺/Yb³⁺ tri-doped CaF₂ phosphors, Optics Communications 281 (2008) 1716–1719.
- [10] P. Zhang, W. Steelant, M. Kumar, M. Scholfield, Versatile photosensitizers for photodynamic therapy at infrared excitation, Journal of the American Chemical Society 129 (2007) 4526–4527.
- [11] J.F. Suyver, J. Grimin, M.K. van Veen, D. Biner, K.W. Kramer, H.U. Gudel, Upconversion spectroscopy and properties of NaYF₄ doped with Er³⁺, Tm³⁺ and/or Yb³, Journal of Luminescence 117 (2006) 1–12.
- [12] Q.Y. Zhang, T. Li, Z.H. Jiang, X.H. Ji, B. Buddhudu, 980 nm Laser-diode-excited intense blue upconversion in Tm³⁺/Yb³⁺-codoped gallate-bismuth-lead glasses, Applied Physics Letters 87 (2005) 171911-1-3
- [13] V.P. Gapontsev, S.M. Matitsin, A.A. Isineev, V.B. Kravcheko, Erbium glass lasers and their applications, Optics and Laser Technology 14 (1982) 189–196.
- [14] J.C. Boyer, F. Vetrone, L.A. Cupconversioncia, J.A. Capobianco, Synthesis of colloidal upconverting NaYF₄ nanocrystals doped with Er³⁺,Yb³⁺ and Tm³⁺,Yb³⁺ via thermal decomposition of lanthanide trifluoroacetate precursors, Journal of the American Chemical Society 128 (2006) 7444–7445.
- [15] Y.H. Wang, J. Ohwaki, New transparent vitroceramics codoped with Er³⁺ and Yb³⁺ for efficient frequency up-conversion, Applied Physics Letters 63 (1993) 3268–3270.
- [16] A.M. Pires, O.A. Serra, S. Heer, H.U. Güdel, Low-temperature upconversion spectroscopy of nanosized Y₂O₃:Er,Yb phosphor, Journal of Applied Physics 98 (2005) 063529-1-7.
- [17] A. Patra, C.S. Friend, R. Kapoor, P.N. Prasad, Upconversion in Er³⁺:ZrO₂ nanocrystals, Journal of Physical Chemistry B 106 (2002) 1909–1912.
- [18] A. Phuruangrat, T. Thongtem, S. Thongtem, Preparation, characterization and photoluminescence of nanocrystalline calcium molybdate, Journal of Alloys and Compounds 481 (2009) 568–572.
- [19] T. Thongtem, A. Phuruangrat, S. Thongtem, Sonochemical synthesis of MMoO₄ (M=Ca, Sr and Ba) nanocrystals, Journal of Ceramic Processing Research 9 (2008) 189–191.
- [20] L.H.C. Andrade, M.S. Li, Y. Guyot, A. Brenier, G. Boulon, Optical multi-sites of Nd³⁺-doped CaMoO₄ induced by Nb⁵⁺ charge compensator, Journal of Physics: Condensed Matter 18 (2006) 7883–7892.
- [21] J.H. Chung, J.H. Ryu, J.W. Eun, J.H. Lee, S.Y. Lee, T.H. Heo, B.G. Choi, K.B. Shim, Green upconversion luminescence from poly-

- crystalline Yb^{3+} , Er^{3+} Co-doped CaMoO₄, Journal of Alloys and Compounds 552 (2012) 30–34.
- [22] J. Liu, H. lian, C. Shi, Improved optical photoluminescence by charge compensation in the phosphor system CaMoO₄:Eu³⁺, Optical Materials 29 (2007) 1591–1594.
- [23] D. Yang, C. Li, G. Li, M. Shang, X. Kang, J. Lin, Colloidal synthesis and remarkable enhancement of the upconversion luminescence of BaGdF₅:Yb³⁺/Er³⁺ nanoparticles by activeshell modification, Journal of Materials Chemistry 21 (2011) 5923–5927
- [24] J.J. Li, L.W. Yang, Y.Y. Zhang, J.X. Zhong, C.Q. Sun, P.K. Chu, Pump-power tunable white upconversion emission in lanthanidedoped hexagonal NaYF₄ nanorods, Optical Materials 33 (2011) 882–887.
- [25] I. Etchart, I. Hernandez, A. Huignard, M. Berard, M. Laroche, W.P. Gillin, R.J. Curry, A.K. Cheetham, Oxide phosphors for light upconversion; Yb³⁺ and Tm³⁺ co-doped Y₂BaZnO₅, Journal of Applied Physics 109 (2011) 063104-1-7.
- [26] J.H. Chung, S.Y. Lee, K.B. Shim, S.Y. Kweon, S.C. Ur, J.H. Ryu, Blue upconversion luminescence of CaMoO₄:Li⁺/Yb³⁺/Tm³⁺ phosphors prepared by complex citrate method, Applied Physics A 108 (2012) 369–373.
- [27] F. Wang, X.G. Liu, Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF₄ nanoparticles, Journal of the American Chemical Society 130 (2008) 5642–5643.
- [28] K. Mishra, N.K. Girl, S.B. Rai, Preparation and characterization of upconversion luminescent Tm³⁺/Yb³⁺ co-doped Y₂O₃ nanophosphor, Applied Physics B—Laser and Optics 103 (2011) 863–875.