

Available online at www.sciencedirect.com

SciVerse ScienceDirect

CERAMICSINTERNATIONAL

Ceramics International 39 (2013) 2743-2751

www.elsevier.com/locate/ceramint

Effects of whisker-like β -Si₃N₄ seeds on phase transformation and mechanical properties of α/β Si₃N₄ composites using MgSiN₂ as additives

Zhen-hua Liang^a, Hai-long Zhang^b, Liu-cheng Gui^a, Jun Li^b, Gui-hua Peng^{a,*}, Guo-jian Jiang^c

^aState Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Chemical Engineering of Guangxi Normal University, Guilin, Guangxi 541004, China ^bShanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China ^cShanghai Institute of Technology, Shanghai 200050, China

> Received 15 July 2012; received in revised form 10 September 2012; accepted 11 September 2012 Available online 19 September 2012

Abstract

 α/β Si₃N₄ composites with β-Si₃N₄ content ranging from 26% to 100% were hot-pressed with or without β-Si₃N₄ seeds, using MgSiN₂ as additives, and their mechanical properties were investigated. When the α -Si₃N₄ content was over 58%, the microhardness of α/β Si₃N₄ composites was in the range of 23–24 GPa, and then the indentation hardness decreases with decreasing the content of α -Si₃N₄, whether with β-Si₃N₄ seeds or not. The toughness increased with increasing elongated β-Si₃N₄ grains, which improved fracture resistance by crack bridging, pull out or the crack deflection mechanism, and reached the maximum value of 7.0 MPa m^{1/2} with 1 wt% β-seeds. In comparison with α/β Si₃N₄ composite with a similar phase composition, the fracture strength was improved by adding β-Si₃N₄ seeds because of the relatively smaller grain sizes and higher toughness. The α/β Si₃N₄ composite with 5 wt% β-seeds showed a high strength of 1253 MPa, a high hardness of 20.9 GPa and a toughness of 6.9 MPa m^{1/2}.

Keywords: A. Phase transformation; C. Mechanical properties; D. Silicon nitride; Seeds

1. Introduction

Silicon nitride based ceramics have been extensively studied and are widely used in numerous structural applications, such as engine components, extrusion dies and cutting tools, due to their superior physical and mechanical properties [1,2]. As we know, the compound Si_3N_4 occurs in four polymorphic crystal structures, α , β , γ and another still-ambiguous phase δ -Si₃N₄, and the former two are hexagonal structure and γ -Si₃N₄ (the Vickers hardness is 30–43 GPa) is close to that of stishovite, a high-pressure phase of SiO₂, which is considered to be the hardest oxide, however it is difficult to obtain γ -Si₃N₄, which can be

fabricated by static high-pressure synthesis utilizing the technique of laser heating in a diamond cell at pressures above 15 GPa and temperatures exceeding 2000 K or dynamic high-pressure synthesis using a propellant gun, which generates high pressure and high temperature simultaneously [3–5]. Therefore, α -Si₃N₄ and β -Si₃N₄ powders have always been used as starting materials to produce bulk silicon nitride based ceramics. The α-Si₃N₄ and β-Si₃N₄ have a similar structure, containing SiN₄ tetrahedra forming a corner-shared three-dimensional network, but the stacking sequence of the planes along the z-axis is different, ABCD in α -Si₃N₄ and AB or CD in β -Si₃N₄, resulting in the different mechanical properties [1,6]. It was estimated that the ideal strength of the α-Si₃N₄ and β-Si₃N₄ single crystals calculated for an applied tensile γ_{11} strain, in the [100] plane, is ~51 and 57 GPa, respectively, and the Vickers indentation hardness is ~ 23.0 GPa

^{*}Corresponding author. Tel.: +86 773 5846279; fax: +86 773 5829008. *E-mail address:* pengguihua164@163.com (G.-h. Peng).

and 20.4 GPa, respectively [6]. α -Si₃N₄ always has a equiaxed shape and β -Si₃N₄ can form whisker-reinforced microstructure, which is benefit for improving mechanical properties, such as strength and toughness through crack deflection and crack bridging [7–9]. Therefore, α/β Si₃N₄ composite with a microstructure of rod-like β -Si₃N₄ grains embedded in fine, hard α -Si₃N₄ matrix may be a promising material with good combination of hardness, fracture toughness and strength, which is important for silicon nitride based ceramics used as wear-resistance components.

 $\alpha/\beta~Si_3N_4$ composites have been fabricated at a relatively low temperature or by rapid consolidation methods or using La₂O₃ as a sintering additive to suppress the $\alpha\text{-}\beta$ phase transformation [9]. In our previous work, hard and strong $\alpha/\beta~Si_3N_4$ composite (the Vickers indentation hardness of 23.1 GPa, the fracture strength of about 1000 MPa, the toughness of 6.3 MPa m^{1/2}) could be fabricated by hot pressing $\alpha\text{-}Si_3N_4$ powders at 1600 °C for 6 h, using MgSiN₂ as sintering additives [10]. $\alpha/\beta~Si_3N_4$ composites, showing a hardness of 19.0 GPa and a toughness of 7.7 MPa m^{1/2}, were also fabricated by spark plasma sintering with MgSiN₂ as additives [11]. The microstructures and mechanical properties of $\alpha/\beta~Si_3N_4$ composites can be tailored by changing the phase compositions through controlling heating schedule, however this change is limited.

On the other hand, it is now well accepted that the fracture toughness and strength can be simultaneously improved by controlling the content and size distribution of β-Si₃N₄ seeds in the starting material [12–14]. Hirao et al. reported that by seeding morphologically regulated β-Si₃N₄ particles, the fracture toughness was improved from 6.3 to 8.4–8.7 MPa m^{1/2}, retaining high strength of about 1 GPa [13]. High hardness α-Si₃N₄ ceramics reinforced by rod-like β-Si₃N₄ seed particles were fabricated by the tape casting technique using La₂O₃ as a sintering additive [7]. The fracture toughness and strength could be significantly improved from about 2 to 6 MPa m^{1/2} and 387–798 MPa, respectively [7]. In the present work, α/β Si₃N₄ composites were hot-pressed with or without whisker-like β-Si₃N₄ seeds, using MgSiN₂ as additives and effects of β-seeds on phase transformation and mechanical properties of α/β Si₃N₄ composites were investigated.

2. Experimental procedures

α-Si₃N₄ powders (SN-E10, UBE Industries, Tokyo, Japan), MgSiN₂ powders (purity > 99%, prepared by combustion synthesis in our laboratory [15]) and whisker-like β -Si₃N₄ particles were used as the starting raw materials. The whisker-like β -Si₃N₄ particles were prepared by combustion synthesis using MgSiN₂ powders as additives [16], and then were immersed in hydrofluoric acid for 24 h to remove the residual glass phase. Fig. 1 shows the microstructure of β -Si₃N₄ seeds. The raw materials, according to the required mass ratios, were planetary ball milled for 3 h with Si₃N₄ balls and container, using absolute ethanol as a mixing medium. The homogenized slurry was dried in a vacuum oven followed by passing through 40-mesh sieve to

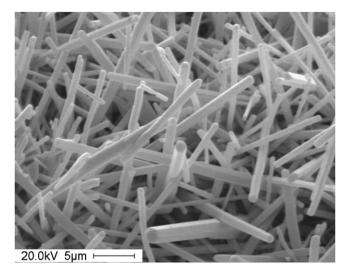


Fig. 1. SEM micrograph of whisker-like β -Si₃N₄ seeds.

obtain agglomerate-free powder mixture. In order to understand the influences of β -seeds on phase transformation and mechanical properties, α/β Si₃N₄ composites with different α/β ratios were also prepared without β -seeds. All samples were hot-pressed under 20 MPa uniaxial pressure in a flowing nitrogen atmosphere. The details of different sintering conditions for all samples are presented in Table 1.

Bulk densities were measured by the Archimedes method in distilled water. The phase compositions of the specimens were determined by X-ray diffraction analysis (XRD, Rigaku D/max 2550V, Japan) with *CuKα* radiation, operating at 40 kV and 100 mA. Scanning electron microscopy (SEM, JSM-6700F, Joel, Tokyo, Japan) was used to analyze the microstructure of the specimens, which were finished using a 2.5 μm diamond slurry and etched by molten NaOH for 30–60 s. The Vickers microhardness and fracture toughness were determined by Vickers indentation with a load of 49 N for duration of 10 s on polished surfaces perpendicular to the hot-pressing direction. The fracture toughness was calculated as [17,18]:

$$\frac{K_{IC}\Phi}{(Ha^{1/2})} = 0.15k \left(\frac{c}{a}\right)^{-3/2} \tag{1}$$

where $\Phi(=3)$ and k(=3.2) are two dimensionless constants, H is the hardness, a is the half-diagonal of the Vickers indent and c is the radius of the surface crack. The fracture strength of sintered $\mathrm{Si}_3\mathrm{N}_4$ composites, which were ground to a sample size of $4~\mathrm{mm}\times3~\mathrm{mm}\times35~\mathrm{mm}$, was measured by a three-point bending test with a 30 mm span at a crosshead speed of 0.5 mm/min at room temperature. All the mechanical tests were performed 5 times.

3. Results and discussion

3.1. Phase transformation

All of the specimens, in the presence of MgSiN₂ powders as sintering additives, could be sintered to nearly full

Table 1				
Experimental	conditions	of	different	samples.

Sample	Mass ratio			Temperature (°C)	Hold time (h)
	α -Si ₃ N ₄	MgSiN ₂	β-seeds		
S1	100	5	0	1600	6
S2	100	5	1	1600	6
S3	100	5	5	1600	6
S4	100	5	10	1600	6
S5	100	5	0	1600	1
S6	100	5	0	1600	3
S7	100	5	0	1600	10
S8	100	5	0	1650	1
S9	100	5	0	1700	1
S10	100	5	0	1750	1

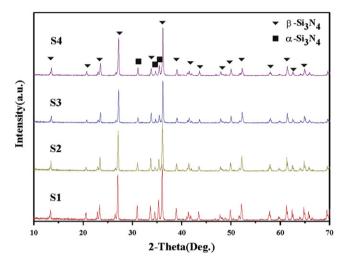


Fig. 2. XRD patterns of samples S1, S2, S3 and S4.

density (>99% of theoretical density) with or without whisker-like β -Si₃N₄ seeds and almost no open porosities were observed on the polished surfaces of all sintered materials, examined by an optic microscope. These results indicate that when the β -Si₃N₄ seeds content is less than or equal to 10 wt% of α -Si₃N₄ starting materials, the influence of β -Si₃N₄ seeds on the sintering activity of starting materials is negligible in the present investigation, which is consistent with other previous studies [19].

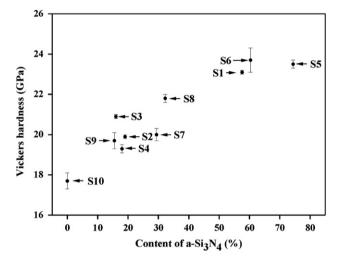
The X-ray diffraction patterns of sample S1, S2, S3 and S4, which were all hot-pressed at $1600\,^{\circ}\mathrm{C}$ for 6 h besides with the different $\beta\text{-Si}_3N_4$ seeds content, are presented in Fig. 2. It is clear that all four specimens were composed of $\alpha\text{-Si}_3N_4$ and $\beta\text{-Si}_3N_4$ phases and no other crystal phases were detected. The reason of the disappearance of MgSiN₂ phase in the resultant silicon nitride ceramics was considered that MgSiN₂ reacted with surface silica and Si₃N₄ to form low-viscosity Mg–Si–O–N liquid phase, which would effectively promote the densification of $\alpha\text{-Si}_3N_4$ powders [10,11]. The $\alpha\text{-Si}_3N_4$ content of specimen S5, which was fully densified at $1600\,^{\circ}\mathrm{C}$ for 1 h, is as high as 74 wt%, thus, it is reasonable to speculate that high density α/β Si₃N₄ composites can be obtained by densifying through not only the

solution-precipitation process but also by diffusion and material transfer.

The amount of α - and β -phases in all α/β Si₃N₄ composites were quantitatively analyzed by the method, proposed by Käll, based on the determination of the intensity ratios of the reflections (101) and (210) in the β -phase and (102) and (201) in the α-phase [20], and the results are listed in Table 2. The β-Si₃N₄ content increased along with the extension of hold time or the increasing of the sintering temperature. Noted that if the starting β -Si₃N₄, containing β -Si₃N₄ in the starting α -Si₃N₄ powders (SN-E10) and whisker-like β-Si₃N₄ seeds, is subtracted from the final β-Si₃N₄ content in the composites, the net β-Si₃N₄ formed during the hot-pressing processes of sample S1, S2, S3 and S4, are 37, 75, 75 and 69%, respectively. It can be seen that the phase transformation rate of α to β phase was significant elevated by adding β -Si₃N₄ seeds, even though the amount of β -Si₃N₄ seeds was as little as 1 wt% with respect to α-Si₃N₄ starting powders. The α to β phase transformation, driven by a solubility difference between α-Si₃N₄ and β-Si₃N₄ crystals, takes place by (a) dissolution of the α -Si₃N₄ and saturation of the liquid phase, (b) transport of Si and N ions through the liquid phase, and (c) attachment onto exiting β-Si₃N₄ grains [21]. The effect of volume fraction of β-Si₃N₄ crystal on the α - β transformation rate was simulated by Kitayama et al. adopting the anisotropic Ostwald ripening theory, and the results showed that if the phase transformation is controlled primarily by the interfacial reaction of β -Si₃N₄ crystals and the liquid phase, the α - β transformation rate increased with the increasing of the fraction of the β -Si₃N₄ [22]. Kitayama et al. also found that the α-β transformation rate significantly increased by adding β-Si₃N₄ seeds and they believed that the phase transformation is controlled primarily by the interfacial reaction of β-Si₃N₄ crystal [7]. In the present instance, the phase transformation, therefore, might also be interfacial reaction controlled. Thus, the α - β transformation rate increased with β -Si₃N₄ addition, which increased the interface of the β -Si₃N₄ crystal. It should be also noted that the α- β transformation rate with 5 wt% β-Si₃N₄ seeds was the

			,, , ,		
Sample	Phase composition (%)		Hv (GPa)	σ _f (MPa)	K _{IC} (MPa m ^{1/2})
	α-Si3N4	β-Si3N4			
S1	58	42	23.1 ± 0.1	988 ± 25	6.3 ± 0.1
S2	19	81	19.9 ± 0.1	1249 ± 29	7.0 ± 0.1
S3	16	84	20.9 ± 0.1	1253 ± 34	6.9 ± 0.1
S4	18	82	19.3 ± 0.2	1149 ± 27	6.5 ± 0.1
S5	74	26	23.5 ± 0.2	607 ± 25	4.6 ± 0.1
S6	60	40	23.7 ± 0.6	750 ± 15	5.2 ± 0.1
S7	29	71	20.0 ± 0.3	1051 ± 52	6.9 ± 0.1
S8	32	68	21.8 ± 0.2	1058 ± 37	6.4 ± 0.2
S9	15	85	19.7 ± 0.4	1028 ± 29	6.7 ± 0.1

 17.7 ± 0.4

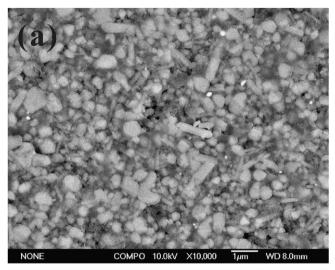

Table 2 Phase compositions and mechanical properties of α/β Si₃N₄ composites.

same as that with 1 wt% β -seeds and then the transformation rate decreased when the amount of β -seeds increased to 10 wt%. Besides of the α : β ratio in starting materials, the amount of liquid phase, formed during the α - β transformation process at high temperature, likewise decreased with the rise of β -seeds content from 1 wt% to 10 wt% and subsequently the interface between Si₃N₄ crystals (both α -Si₃N₄ and β -Si₃N₄) and liquid phase was correspondingly reduced, resulting in the speed of the dissolution of α -Si₃N₄ in liquid phase and the formation of β -Si₃N₄ decreased.

S10

3.2. Hardness

The mechanical properties, i. e. the Vickers hardness, fracture toughness and fracture strength of all samples in the present study are listed in Table 2. The dependencies of the microhardness on the β-Si₃N₄ content are illustrated in Fig. 3. When the $\alpha\text{-Si}_3N_4$ content of sintered α/β Si_3N_4 composite S6 is 60%, the microhardness is highest, 23.7 GPa, and the microhardness value is almost constant, in the range of 23–24 GPa, while the α -Si₃N₄ amount is higher than 58%. This result is similar to that finding by Kitayama et al., and in that case, the hardness (about 19 GPa) is independent of the α -contents, which is higher than 57.1% [7]. They thought that the reason was probably related to the alignment of the elongated β-Si₃N₄ grains, due to both tape casting and hot-pressing, because the prismatic plane of the β-Si₃N₄ crystal has much higher hardness than the basal plane [7]. Fig. 4 shows the SEM micrographs of the polished and etched surfaces of samples S5 and S6, containing 74% and 60% α -Si₃N₄, respectively. The needle-like β-Si₃N₄ grains with the length of about 1 μm (Fig. 4a and b) and a small amount of rod-like β- Si_3N_4 grains with the length of about 2.5 µm (Fig. 4b) embedded in a large quantity of equiaxed α-Si₃N₄ grain matrix, and the total amount of β-Si₃N₄ grains is so small that the β-Si₃N₄ grains cannot contact each other. This microstructure is may be another reason for the microhardness of α/β Si₃N₄ composites with high α -Si₃N₄ content is independent of the \beta-contents and close to the


 5.5 ± 0.2

 1121 ± 44

Fig. 3. Relationship between the Vickers hardness and α -Si₃N₄ content of the α/β Si₃N₄ composites.

Vickers indentation hardness of the α -Si₃N₄ single crystal, which was estimated to be \sim 23 GPa using a reported empirical method [6].

Note also that the microhardness of α/β Si₃N₄ composites in the present work is higher than that of α/β Si₃N₄ composites with the similar phase compositions, hotpressed with La₂O₃ [7]. In addition to α-Si₃N₄ and β-Si₃N₄, there is a small amount of the amorphous grain boundary phase in Si₃N₄ ceramics, and the amount of glass boundary phase, existing in the result ceramics, with MgSiN₂ as an addition should be much less than that with 5 vol% La₂O₃ additives because of the much less oxygen content in the former. It is obvious that reducing the amount of the glassy phase is benefit for improving the hardness, owing to the much lower hardness of the vitreous materials than that of both α -Si₃N₄ and β -Si₃N₄, and this is also the reason that Sialon is always harder than Si₃N₄ ceramic. This can also be proved by the fact that the microhardness (23.1 GPa) of sample S1 was much higher than that (19.5 GPa, using the identical measuring method with sample S1) of the α/β Si₃N₄ ceramic with 5 wt% MgO as additives, although both have nearly the same phase

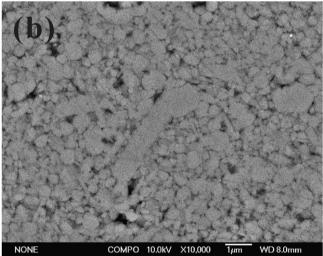


Fig. 4. SEM micrographs of the polished and etched surfaces of the α/β Si₃N₄ composites: (a) S5; and (b) S6.

compositions, as shown in Fig. 5. What's more, the microhardness of α/β Si₃N₄ composites, with more than 58% α -Si₃N₄, in the present work, is slight higher than that of α -Sialon or α/β Sialon. The hardness improvement is probably due to the harder crystal lattice of α -Si₃N₄ than that of α -Sialon and the smaller amount of glass boundary phase by using MgSiN₂ as additives.

The microhardness of β -Si₃N₄ ceramic with no α -Si₃N₄ is lowest, 17.7 GPa, and then the Vickers indentation hardness increases with increasing the content of α -Si₃N₄, whether with or without β -Si₃N₄ seeds. It is well accepted that α -Si₃N₄ is harder than β -Si₃N₄, due to the longer stacking sequence in α -Si₃N₄ and the longer Burgers vector required for slip dislocation [23,24]. Since the α/β Si₃N₄ ceramics were regarded as two-phase composites of α -Si₃N₄ and β -Si₃N₄, the elevation of Vickers indentation hardness with increasing of the α -Si₃N₄ content was easily understood based the rule of mixture. The variations of Vickers hardness of α/β Si₃N₄ composites after adding β -Si₃N₄ seeds are, therefore, an expected result.

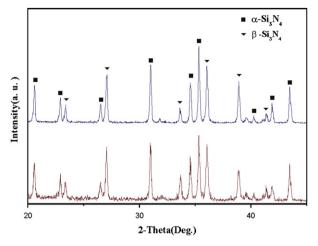


Fig. 5. XRD patterns of the $\alpha/\beta~Si_3N_4$ composites with MgSiN $_2$ or MgO additives

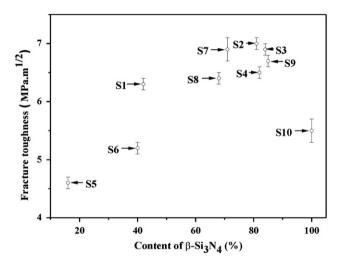


Fig. 6. Relationship between the fracture toughness and $\beta\text{-}Si_3N_4$ content.

3.3. Fracture toughness

Fig. 6 illustrates the indentation toughness as a function of β-phase content. Without β-seeds, the toughness increased from 4.6 MPa m^{1/2} for S5 with 26% β -Si₃N₄ to a maximum value 6.9 MPa m^{1/2} for S7 with 71% β -Si₃N₄, and then decreased to 5.5 MPa m^{1/2} for S10 with 100% β -phase, which is analogical with the toughness variation of α/β Si₃N₄ ceramics prepared by SPS with MgSiN2 additives or hotpressed at 1450-1700 °C with MgO as sintering additions [9,11]. Since α -Si₃N₄ is always equiaxed and β -Si₃N₄ can form rod-like grains, the elongated β-Si₃N₄ grain amount increased with the increasing of the β-Si₃N₄ content, as shown in Figs.4a, b and 7a. The presence of elongated β -Si₃N₄ grains is a prerequisite for triggering respective toughening mechanisms, such as crack bridging, pull out and crack deflection, which contribute to an enhanced energy dissipation upon crack propagation and hence can effectively improve fracture toughness [25–27]. In general, the fracture toughness of silicon nitride increases with the diameter and the amount of the

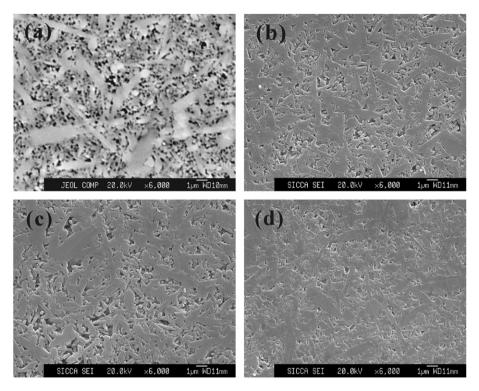


Fig. 7. SEM micrographs of the polished and etched surfaces of the α/β Si₃N₄ composites: (a) S9; (b) S2; (c) S3; and (d) S4.

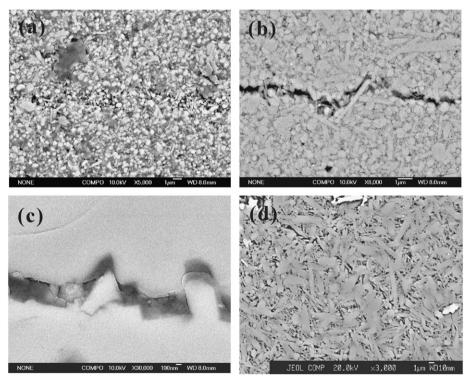


Fig. 8. SEM photographs of the crack propagation paths of the α/β Si₃N₄ composites: (a) S5; (b) S1; (c) S7; and (d) S10.

larger elongated grains, as predicted for frictional bridging and pullout processes [26,27]. Fig. 8 presents crack propagation behaviors of samples S5, S1, S7 and S10, with the

β-phase content of 26%, 42%, 71% and 100%, respectively. The crack propagation path of sample S5 is practically straight due to the microstructure composed of equiaxed

grains for the most part and small needle-like grains. The crack propagation paths of samples S1 and S7 (Fig. 8b and c) confirmed that crack-deflection and poll out occurred in sintered α/β Si₃N₄ composites with the self-reinforced microstructure with large elongated grains embedded in a finegrained matrix, which has been considered as an ideal microstructure realizing the toughening mechanism. The crack propagation path of sample S10 (Fig. 8d), nevertheless, is straighter than that of sample S7, resulting in the fracture toughness decreased to 5.5 MPa m^{1/2}, although the amount of large elongated grains increased. A number of investigations have verified that interfacial debonding, in addition of the reinforcing elongated grains, is a key step in toughening mechanisms [28,29]. The debonding between the reinforcing grains and the intergranular glass must occur so that the crack tip is deflected along the grain face, rather than cutting through the elongated grain, while leaving intact elongated grains to bridge the crack in its wake, and the key issue for the interfacial debonding is the weak interface strength [28,29]. The decreasing of fracture toughness, in this work, is may be owing to too high bonding strength between the elongated β-Si₃N₄ grain and the glass phase, when most of the glass phase was extruded into the three- or four-grain junction because of the increasing sizes of β-Si₃N₄ grains.

The indentation toughness of samples S2, S3 and S4, with 1 wt%, 5 wt% and 10 wt% β-seeds, respectively, in which the β-Si₃N₄ contents are almost the same ranging between 81% and 84%, is close to each other ranging in 6.5–7.0 MPa m^{1/2}. This value is also close to the toughness of samples S7 and S9, with 71% and 85% β-phase, respectively, although both were obtained with no β-seeds, as shown in Fig. 6. These results demonstrated that in the present system, the fracture toughness of α/β Si₃N₄ composite with 70–85% β-phase was primarily controlled by the β-phase content.

3.4. Fracture strength

The fracture strength, σ_f , can be expressed as:

$$\sigma_f = \frac{K_{IC}}{V} \times c^{1/2} \tag{2}$$

where K_{IC} , Y and c are the fracture toughness, geometry coefficient determined by a shape of the defect and critical flaw size, respectively [30]. Obviously, in order to enhance the fracture strength of silicon nitride ceramic, it is necessary to elevate the fracture toughness, K_{IC} , and to minimize the size and distribution of defects as small as possible. Fig. 9 exhibits the correlation of fracture strength of all specimens, either with β -seeds or without, and the β -phase content. Without β -seeds, the fracture strength increased with increasing of the β -phase content and reached the value of 1058 MPa at the β -phase content of 68%. The improvement of the fracture strength of α/β Si₃N₄ composites is due to increasing the fracture toughness value, as a result of the formation of reinforcing β -Si₃N₄ particles along with the α - β phase transformation.

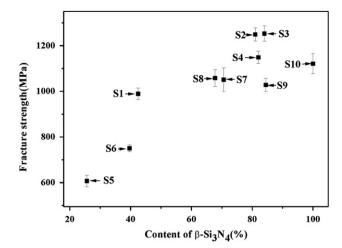


Fig. 9. Relationship between the fracture strength and β -Si₃N₄ content.

When the β-phase content further increased to 85%, the fracture strength slightly dropped to 1028 MPa and the fracture strength increased again to 1121 MPa when $\alpha\text{-}Si_3N_4$ completely transformed to $\beta\text{-}Si_3N_4.$ The reason of the decreasing of strength with the further increasing of β-phase contents should be the increasing the critical flaw size because of the coarsening of β-Si₃N₄ grains. Kawaoka et al. reported that the analogous phenomenon was also observed in α/β Si₃N₄ composites, prepared by pulse electric current sintering process with 6 mol\% Y₂O₃ and 2 mol\% Al₂O₃ additives at 1650-1700 °C for 1-10 min, and they found out that the fracture in the specimen with 89 wt% β-phase was initiated from an agglomerated grain whose size was about 25 µm, while the specimen with 56 wt% of β-phase was fractured from a void with 10 μm size [8]. The cause of the increasing of fracture strength of sintered α/β Si₃N₄ composite with 100% β -Si₃N₄ is unclear, and need to be further explored. After adding whisk-like β-Si₃N₄ particles as seeds, the fracture strength was improved and the maximum value of 1253 MPa was achieved while the content of β -Si₃N₄ seeds was 5 wt%. Since the fracture toughness of sample S2 is practically close to that of sample S9, the elevation of the strength of sample S2 is attributed to the relatively small sizes of rod-like β-Si₃N₄ grains, as shown in Fig. 7a and b, although the β-Si₃N₄ content of sample S2 is almost equal to that of sample S7. As shown in Fig. 7, the grain sizes of α/β Si₃N₄ composites with 1 wt%, 5 wt% or 10 wt% β-seeds were relatively small, and this microstructure should attribute to the improvement of strength. A very high strength of about 2.0 GPa, reported by Yoshimura et al. [31], could be achieved by controlling the grain sizes, which is an effective method to improve the fracture strength of silicon nitride based ceramics [31–33].

4. Conclusion

 α/β Si₃N₄ composites with various α/β ratios were fabricated by hot-pressing at 1600⁻750 °C with or without

whisker-like β-Si₃N₄ seeds, using MgSiN₂ as additives. α-Si₃N₄ powders could be fully sintered with MgSiN₂ additives while the content of β-seeds was below 10 wt%. The phase transformation rate of α to β phase was significant elevated by adding β-Si₃N₄ seeds. The microhardness value is almost constant, in the range of 23-24 GPa while the α -Si₃N₄ amount is higher than 58%, and then the Vickers indentation hardness decreases with decreasing the content of $\alpha\text{-Si}_3N_4$, whether with $\beta\text{-Si}_3N_4$ seeds or not. Without β-seeds, the toughness increased from 4.6 MPa with 26% β -Si₃N₄ to a maximum value 6.9 MPa with 71% β-Si₃N₄, and the increasing is primarily attributed to the formation of the elongated β-Si₃N₄ grains, which can effectively improve fracture resistance by crack bridging, pull out or the crack deflection mechanism. The indentation toughness of samples S2, S3 and S4, with 1 wt%, 5 wt% and 10 wt% β-seeds, respectively, is close to each other ranging in 6.5–7.0 MPa, owing to the similar content of β -phase. The maximum fracture strength of 1253 MPa with 5 wt% β-Si₃N₄ seeds was achieved while the strength of α/β Si₃N₄ composite with a similar phase composition but without β-seeds was 1028 MPa, and the relatively smaller grain sizes and higher toughness for the former is responsible for the improvement of the strength.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 50962003 and 51102053), the Natural Science Foundation of Guangxi Province of China (No. 2011GXNSFB018007) and the Science Foundation of the Education Commission of Shanghai City (No. 09ZZ196).

References

- [1] W. Chen, A. Rosenflanz, A tough SiAION ceramic based on α -Si₃N₄ with a whisker-like microstructure, Nature 389 (1997) 701–704.
- [2] Y. Zhou, H. Hyuga, D. Kusano, Y.I. Yoshizawa, K. Hirao, A tough silicon nitride ceramic with high thermal conductivity, Advanced Materials 23 (2011) 4563–4567.
- [3] A. Zerr, G. Miehe, G. Serghiou, M. Schwarz, E. Kroke, R. Riedel, H. Fue, P. Kroll, R. Boehler, Synthesis of cubic silicon nitride, Nature 400 (1999) 340–342.
- [4] A. Zerr, A new high-pressure δ -phase of Si_3N_4 , Physica Status Solidi (b) 227 (2001) R4–R6.
- [5] T. Sekine, H.L. He, T. Kobayashi, M. Zhang, F.F. Xu, Shock-induced transformation of β-Si₃N₄ to a high-pressure cubic-spinel phase, Applied Physics Letters 76 (2000) 3706–3708.
- [6] S. Ogata, N. Hirosaki, C. Kocer, Y. Shibutani, A comparative ab initio study of the 'ideal' strength of single crystal α and β-Si₃N₄, Acta Materialia 52 (2004) 233–238.
- [7] M. Kitayama, K. Hirao, M. Toriyama, S. Kanzaki, High hardness α-Si₃N₄ ceramics reinforced by rod-like β-Si₃N₄ seed particles, Journal of the Ceramic Society of Japan 108 (2000) 646–649.
- [8] H. Kawaoka, T. Adachi, T. Sekino, Y.H. Choa, L. Gao, K. Niihara, Effect of phase ratio on microstructure and mechanical properties of silicon nitride ceramics, Journal of Materials Research 16 (2001) 2264–2270.
- [9] A.R. De Arellano-Lopez, M.A. McMann, J.P. Singh, J. Martinez-Fernandez, Microstructure and room-temperature mechanical properties

- of Si₃N₄ with various α/β phase ratios, Journal of Materials Science 33 (1998) 5803–5810.
- [10] G.H. Peng, G.J. Jiang, W.L. Li, B.L. Zhang, L.D. Chen, Fabrication of hard and strong α/β Si₃N₄ composites with MgSiN₂ as additives, Journal of the American Ceramic Society 89 (2006) 3824–3826
- [11] G.H. Peng, X.G. Li, M. Liang, Z.H. Liang, Q. Liu, W.L. Li, Spark plasma sintered high hardness α/β Si₃N₄ composites with MgSiN₂ as additives, Scripta Materialia 61 (2009) 347–350.
- [12] P. Šajgalík, J. Dusza, Reinforcement of silicon nitride ceramics by β-Si₃N₄ whiskers, Journal of the European Ceramic Society 5 (1989) 321–326
- [13] K. Hirao, T. Nagaoka, M.E. Brito, S. Kanzaki, Microstructure control of silicon nitride by seeding with rodlike β-silicon nitride particles, Journal of the American Ceramic Society 77 (1994) 1857–1862
- [14] X.W. Zhu, Y. Sakka, T.S. Suzuki, T. Uchikoshi, S. Kikkawa, The c-axis texturing of seeded Si₃N₄ with β-Si₃N₄ whiskers by slip casting in a rotating magnetic field, Acta Materialia 58 (2010) 146–161.
- [15] G.H. Peng, G.J. Jiang, H.R. Zhuang, W.L. Li, A novel route for preparing MgSiN₂ powder by combustion synthesis, Materials Science and Engineering A 397 (2005) 5–8.
- [16] G.H. Peng, G.J. Jiang, H.R. Zhuang, W.L. Li, Fabrication of β-Si₃N₄ whiskers by combustion synthesis with MgSiN₂ as additives, Materials Research Bulletin 40 (2005) 2139–2143.
- [17] A.G. Evans, E.A. Charles, Fracture toughness determination by indentation, Journal of the American Ceramic Society 59 (1976) 371–372.
- [18] K. Niihara, R. Morena, D.P.H. Hasselman, Evaluation of K_{IC} of brittle solids by the indentation method with low crack-to-indent ratios, Journal of Materials Science Letters 1 (1982)13-16 1 (1982).
- [19] H. Emoto, M. Mitomo, Control and characterization of abnormally grown grains in silicon nitride ceramics, Journal of the European Ceramic Society 17 (1997) 797–804.
- [20] P.O. Käll, Quantitative phase analysis of Si₃N₄-based materials, Chemica Scripta 28 (1988) 439–446.
- [21] P.F. Becher, G.S. Painter, N. Shibata, S.B. Waters, H.T. Lin, Effects of rare-earth (RE) intergranular adsorption on the phase transformation, microstructure evolution, and mechanical properties in silicon nitride with RE₂O₃+MgO additives: RE=La, Gd, and Lu, Journal of the American Ceramic Society 91 (2008) 2328–2336.
- [22] M. Kitayama, K. Hirao, M. Toriyama, S. Kanzaki, Modeling and simulation of grain growth in Si_3N_4 -II. the α - β transformation, Acta Materialia 46 (1998) 6551–6557.
- [23] D. Chakraborty, J. Mukerji, Effect of crystal orientation, structure and dimension on vickers microhardness anisotropy of β -, α -Si₃N₄, α -SiO₂ and α -SiC single crystals, Materials Research Bulletin 17 (1982) 843–849.
- [24] M.H. Lewis, R. Fung, D.M.R. Taplin, Indentation plasticity and fracture of Si₃N₄ ceramic alloys, Journal of Materials Science 16 (1981) 3437–3446.
- [25] K.T. Faber, A.G. Evans, Crack deflection processes-I. theory, Acta Metallurgica 31 (1983) 565–576.
- [26] P.F. Becher, Microstructure design of toughened ceramics, Journal of the American Ceramic Society 74 (1991) 255–269.
- [27] H.J. Kleebe, G. Pezzotti, G. Ziegler, Microstructure and fracture toughness of Si₃N₄ ceramics: combined roles of grain morphology and interface chemistry, Journal of the American Ceramic Society 82 (1999) 1857–1867.
- [28] P.F. Becher, E.Y. Sun, C.H. Hsueh, K.B. Alexander, S.L. Hwang, S.B. Waters, C.G. Westmoreland, Debonding of interfaces between beta-silicon nitride whiskers and Si–Al–Y oxynitride glasses, Acta Materialia 44 (1996) 3881–3893.
- [29] P.F. Becher, G.S. Painter, E.Y. Sun, C.H. Hsueh, M.J. Lance, The importance of amorphous intergranular films in self-reinforced ceramics, Acta Materialia 48 (2000) 4493–4499.

- [30] S.M. Wiederhorn, Prevention of failure in glass by proof-testing, Journal of the American Ceramic Society 56 (1973) 227–228.
- [31] M. Yoshimura, T. Nishioka, A. Yamakawa, M. Miyake, Grain size controlled high-strength silicon nitride ceramics, Journal of the Ceramic Society of Japan 103 (1995) 407–408.
- [32] Y. Ukyo, S. Wada, High strength Si₃N₄ ceramics, Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi 97 (1989) 872–874.
- [33] F.F. Lange, Relation between strength, fracture energy, and microstructure of hot-pressed Si₃N₄, Journal of the American Ceramic Society 56 (1973) 518–522.