

Available online at www.sciencedirect.com

SciVerse ScienceDirect

CERAMICSINTERNATIONAL

Ceramics International 39 (2013) 3789-3793

www.elsevier.com/locate/ceramint

Microwave dielectric properties of (1-x)ZnTa₂O₆-xMgNb₂O₆ ceramics

Baojian Fu, Yingchun Zhang*, Hui Yue

School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China

Received 9 July 2012; received in revised form 16 October 2012; accepted 17 October 2012 Available online 27 October 2012

Abstract

Single phase MgNb₂O₆ and ZnTa₂O₆ powders were synthesized by solid-state method, and the high quality factor composite ceramics of (1-x)ZnTa₂O₆-xMgNb₂O₆ (x=0, 0.05, 0.10, 0.15, 0.20, 0.25 and 1.0) were prepared using the as-synthesized powders. The microwave dielectric properties, microstructure, phase transition and sintering behavior of the composite ceramics were investigated. The X-ray diffraction analysis revealed that solid solution between ZnTa₂O₆ and MgNb₂O₆ phases appeared in the composite ceramic. SEM results show that the grain sizes of the composite ceramics increased with increasing x values. The temperature coefficient of resonant frequency of (1-x)ZnTa₂O₆-xMgNb₂O₆ composite ceramics reaches near-zero of 1.02 ppm/°C with ε_r =35.58 and a high quality factor of 65500 GHz when x=0.20 and sintered at 1350 °C for 2 h. © 2012 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: B. Composite; D. Microwave dielectric ceramic; D. MgNb₂O₆; D. ZnTa₂O₆

1. Introduction

The fast growth of microwave communication demands more and more dielectric ceramics with high performance. The properties required for a high performance dielectric ceramic are high dielectric constant (ε_r), high quality factor $(Q \times f)$ and near zero temperature coefficient of resonant frequency $(\tau_f)[1,2]$. However, most of the single phase microwave dielectric ceramics do not have a near zero τ_f and need to be adjusted for practical applications. There are many methods for adjusting microwave dielectric properties of ceramics, such as forming solid solution, use of additives, nonstoichiometry, stacked resonator and forming mixture phases [3-5]. Among those methods, mixing two kinds of single phase ceramics with opposite τ_f values, both have high ε_r and high $Q \times f$ is an effective method to obtain high performance microwave dielectric ceramics [6,7].

Recently, AB_2O_6 (A = Ca, Mg, Mn, Co, Ni, Zn etc. and B = Nb, Ta) compounds were found to be promising candidates for application in microwave devices [8,9].

E-mail address: Zhang@ustb.edu.cn (Y. Zhang).

Among these compounds, both of MgNb₂O₆ and ZnTa₂O₆ have excellent microwave dielectric properties (ε_r =19.17, $Q \times f$ =68,805 GHz for MgNb₂O₆ and ε_r =36.02, $Q \times f$ =56417 GHz for ZnTa₂O₆). However, MgNb₂O₆ have a negative τ_f of -70.56 and ZnTa₂O₆ have a positive τ_f of 8.94 ppm/°C [10,11]. Therefore, it is necessary to modify τ_f of them to near zero and keep the high quality factors simultaneously for practical applications. In this work, the composite ceramics of (1-x)ZnTa₂O₆-xMgNb₂O₆ was prepared and the effects of x values on the microwave dielectric properties and microstructures of the ceramics were investigated.

2. Experimental

MgNb₂O₆ and ZnTa₂O₆ powders were synthesized by solid-state reaction method. MgO (\geq 98.5%), ZnO (\geq 99.0%), Nb₂O₅ (\geq 99.99%) and Ta₂O₅ (\geq 99.99%) were used as starting materials. For preparing MgNb₂O₆ powders, the stoichiometric ratios of MgO and Nb₂O₅ were mixed and ball-milled in ethanol with zirconia balls for 2 h. After drying, the mixed powders were calcined in covered alumina crucible at 1000 °C for 2 h in air.

^{*}Corresponding author.

ZnTa₂O₆ powders were synthesized in the same way and calcined at $1100\,^{\circ}\text{C}$ for 2 h. $(1-x)\text{ZnTa}_2\text{O}_6-x\text{MgNb}_2\text{O}_6$ ($x=0,\ 0.05,\ 0.10,\ 0.15,\ 0.20,\ 0.25$ and 1.0) ceramics were prepared from the as-synthesized powders of MgNb₂O₆ and ZnTa₂O₆. The powders were mixed and remilled for 2 h then pressed into pellets of 10 mm in diameter and 6 mm in thickness at 100 MPa. The pellets were sintered at $1200-1400\,^{\circ}\text{C}$ for 2 h in air.

The crystal structure of the calcined powders and sintered ceramics were examined by X-ray diffraction (XRD, Rigaku, DMAX-RB, Japan) using Cu K_{α} radiation with a scan speed of 10 °/min. The apparent densities of the sintered samples were measured by Archimedes' method. The microstructures of the ceramics were studied by scanning electron microscopy (SEM, JSM-6480LV). The dielectric properties of the ceramic samples were measured with a HP8720ES network analyzer using Hakki–Coleman's dielectric resonator method, as modified and improved by Courney and Kobayashi et al.[12–14].

3. Results and discussion

Fig. 1 shows the XRD patterns of calcined powders of MgNb₂O₆ and ZnTa₂O₆. Both of them are single phases and belong to orthorhombic crystal system, columbite for MgNb₂O₆ and tri-αPbO₂ for ZnTa₂O₆ structure (JCPDS, File No. 88-0708, and No. 76-1826), respectively. The phases of composite ceramics sintered at 1350 °C are shown in Fig. 2, and the similar patterns were obtained when x increased from 0 to 0.25 except slight shift in the position of diffraction peaks. This phenomena is due to the same ionic radii (64 Å) of Nb⁵⁺ and Ta⁵⁺ and similar ionic radii of $Mg^{2+}(0.72 \text{ Å})$ and $Zn^{2+}(0.74 \text{ Å})$ [15], furthermore, both of MgNb2O6 and ZnTa2O6 belong to orthorhombic crystal system, it is easily for them to occur chemical reactions and form solid solutions [11]. For x = 0.05 - 0.25, the $(1 - x)ZnTa_2O_6 - xMgNb_2O_6$ composite ceramics exhibit a structure based on ZnTa2O6 phase

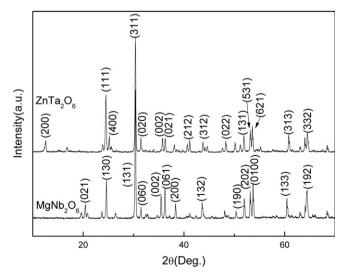


Fig. 1. XRD patterns of calcined powders of MgNb₂O₆ and ZnTa₂O₆.

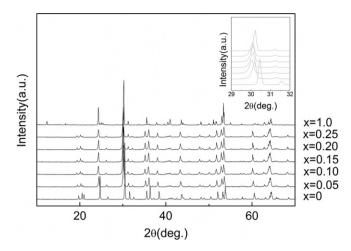


Fig. 2. XRD patterns of sintered samples of $(1-x)ZnTa_2O_6 - xMgNb_2O_6$ ceramics (x=0, 0.05, 0.10, 0.15, 0.20, 0.25 and 1.0).

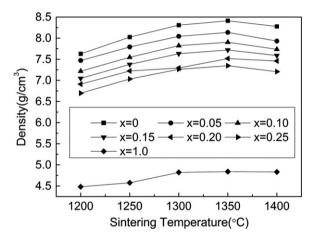


Fig. 3. Densities of (1-x)ZnTa₂O₆-xMgNb₂O₆ ceramics (x=0, 0.05, 0.10, 0.15, 0.20, 0.25 and 1.0) as a function of sintering temperature.

because of the high content of ZnTa₂O₆, and the shift of diffraction peaks shows the change of lattice parameters.

Fig. 3 shows densities of $(1-x) \text{ZnTa}_2 \text{O}_6 - x \text{MgNb}_2 \text{O}_6$ ceramics with different x values as a function of sintering temperature. For all the samples with various x values, although the solid solution is occurred between $\text{MgNb}_2 \text{O}_6$ and $\text{ZnTa}_2 \text{O}_6$ in the sintering process, bulk densities of the composite ceramics increased with increasing sintering temperature, and then declined after reaching a maximum values at $1350\,^{\circ}\text{C}$. The densities of all samples with different x values sintered at the same temperature decreased with increasing x values. It indicates that $(1-x) \text{ZnTa}_2 \text{O}_6 - x \text{MgNb}_2 \text{O}_6$ ceramics can be successfully sintered at $1350\,^{\circ}\text{C}$ when x=0, 0.05, 0.10, 0.15, 0.20, 0.25 and 1.0.

The surface micrographs of $(1-x) \text{ZnTa}_2 \text{O}_6 - x \text{MgNb}_2 \text{O}_6$ ceramics sintering at 1350 °C were depicted in Fig. 4. The results show that the morphology of sample with x = 0.05 is similar to that of single phase $\text{ZnTa}_2 \text{O}_6$ due to the low-level of $\text{MgNb}_2 \text{O}_6$. The grain sizes increased with increasing of the content of $\text{MgNb}_2 \text{O}_6$ in the composite ceramic. This phenomenon can be attributed to that the sintering

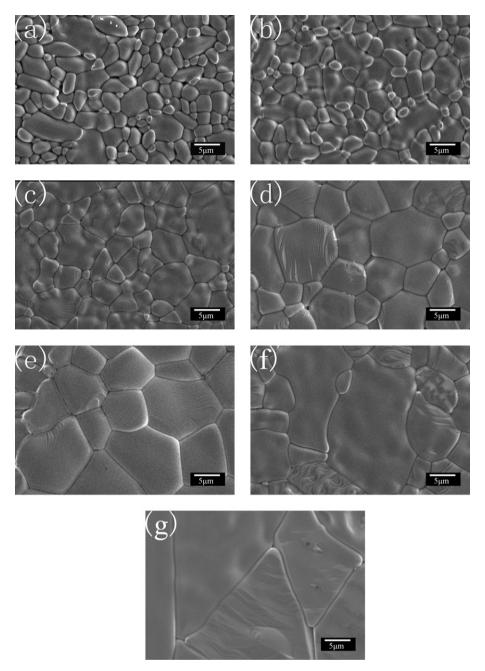


Fig. 4. Surface SEM photographs of (1-x)ZnTa₂O₆-xMgNb₂O₆ ceramics sintering at 1350 °C (a) x=0, (b) x=0.05, (c) x=0.10, (d) x=0.15, (e) x=0.20, (f) x=0.25 and (g) x=1.0.

temperature of MgNb₂O₆ ceramics is lower than that of ZnTa₂O₆ ceramics. Fig. 5 presents the element distribution of $0.80ZnTa_2O_6-0.20MgNb_2O_6$ composite ceramics. It can be seen that the elements of Nb and Ta distribute uniformly in all grains, which indicates that Nb⁵⁺ and Ta⁵⁺ have substituted each other. The same phenomena can be observed for Mg²⁺ and Zn²⁺. Those results verified that solid solutions have occurred between MgNb₂O₆ and ZnTa₂O₆ in the composite ceramics.

Fig. 6 shows the microwave dielectric properties of (1-x)ZnTa₂O₆-xMgNb₂O₆ composite ceramics sintered at 1350 °C for 2 h in air. The calculated values of ε_r , $Q \times f$,

and τ_f are also given according the empirical equations as follows [16–19]:

$$\varepsilon_r = v_1 \varepsilon_1 + v_2 \varepsilon_2 \tag{1}$$

$$\tau_f = v_1 \tau_1 + v_2 \tau_2 \tag{2}$$

$$\frac{1}{Q} = \frac{v_1}{Q_1} + \frac{v_2}{Q_2} \tag{3}$$

where ε_r , τ_f and Q are the dielectric constant, temperature coefficient of resonant frequency and quality factor of the mixture. v_1 and v_2 are volume fractions of the two

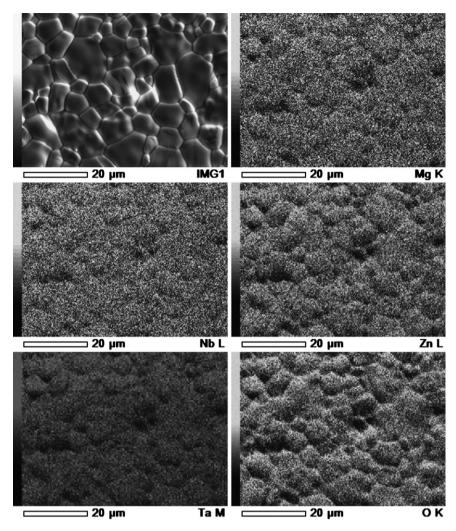


Fig. 5. SEM photographs of 0.80ZnTa₂O₆ – 0.20MgNb₂O₆ composite ceramic sintered at 1350 °C and the corresponding elemental mapping.

components. ε_1 , ε_2 , τ_1 , τ_2 and Q_1 , Q_2 are their dielectric constants, temperature coefficients of resonant frequency and quality factors of each component, respectively. The empirical equations are based on the fact that every component in the mixture does not have chemical reactions with each other. The measured microwave dielectric properties of single phase ZnTa₂O₆ and MgNb₂O₆ agree well with those of early studies. However, for (1-x)ZnTa₂O₆-xMgNb₂O₆ ceramics with x=0.05-0.25, chemical reactions happened between two components in the mixture, and the measured ε_r , τ_f and $Q \times f$ values deviated from the calculated value. The measured ε_r values do not change remarkably, and ranged from 35.57 to 35.71 as x changes from 0.05 to 0.25 due to the composite ceramic exhibit a ZnTa₂O₆-like structure. However, the measured $Q \times f$ values are higher than the calculated values, and increased rapidly from 58900 to 64700 GHz as x ranges from 0.05 to 0.15 and then increase near linearly to 66300 GHz when x increasing to 0.25. According to the empirical equation, the calculated τ_f values decreased with increasing x values and could reach 1.07 ppm/ $^{\circ}$ C when x = 0.10. However, the measured values

of τ_f were delayed and reached 1.02 ppm/°C until x=0.20, then continuing to decrease to -4.27 ppm/°C when x=0.25. These results may attribute to the formation of solid solutions and the change of lattice parameters and thus lead to the changing of τ_f and $Q \times f$ for x=0.05–0.25.

4. Conclusions

The single phase of MgNb₂O₆ and ZnTa₂O₆ powders have been synthesized using solid-state method when the mixture of corresponding oxides calcined at 1000 °C and 1100 °C for 2 h in air, respectively. The (1-x)ZnTa₂O₆-xMgNb₂O₆ (x=0,0.05,0.10,0.15,0.20,0.25 and 1.0) composite ceramics can be well sintered at 1350 °C for 2 h in air. Interdiffusion of elements such as Nb, Ta, Mg and Zn can observe in composite ceramics, which indicates that solid solution is formed between ZnTa₂O₆ and MgNb₂O₆ ceramics. The interdiffusion and solid solution in composite ceramic lead to the deviation of microwave dielectric properties from the calculated values according to the empirical equations. The temperature coefficient of resonant frequency (τ_f) can reach near-zero of 1.02 ppm/°C with ε_r =35.58 and remains a high

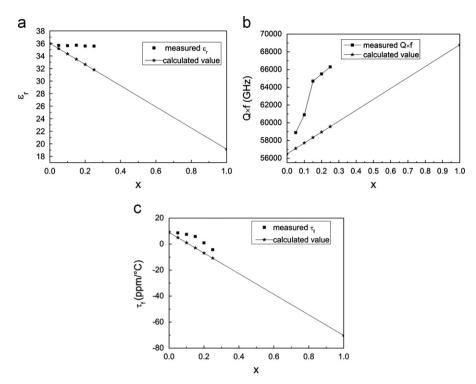


Fig. 6. Microwave dielectric properties of (1-x)ZnTa₂O₆-xMgNb₂O₆ ceramics (x=0, 0.05, 0.10, 0.15, 0.20, 0.25 and 1.0) sintering at 1350 °C as a function of x, (a) ε_r , (b) $Q \times f$, (c) τ_f .

quality factor $(Q \times f)$ of 65500 GHz when x=0.20 sintering at 1350 °C for 2 h.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51172019 and 50972008).

References

- S.B. Narang, S. Bahel, Low loss dielectric ceramics for microwave applications: a review, Journal of Ceramic Processing Research 11 (3) (2010) 316–321.
- [2] H. Ohsato, Functional advances of microwave dielectrics for next generation, Ceramics International 38 (Suppl. 1) (2012) S141–S146.
- [3] M.T. Sebastian, in: Dielectric Materials for Wireless Communication, Elsevier Science Publishers, Oxford, 2008.
- [4] A.L. Snashall, L. Norén, Y. Liu, T. Yamashita, F. Brink, R.L. Withers, Phase analysis and microwave dielectric properties of BaO-Nd₂O₃-5TiO₂ composite ceramics using variable size TiO₂ reagents, Ceramics International 38 (Suppl. 1) (2012) S153-S157.
- [5] A. Chaouchi, S. d'Astorg, S. Marinel, Low sintering temperature of (Zn_{0.65}Mg_{0.35})TiO₃-xCaTiO₃-based dielectric with controlled temperature coefficient, Ceramics International 35 (5) (2009) 1985–1989.
- [6] J. Guo, D. Zhou, H. Wang, X. Yao, Microwave dielectric properties of (1-x)ZnMoO₄-xTiO₂ composite ceramics, Journal of Alloys and Compounds 509 (19) (2011) 5863-5865.
- [7] K. Yan, T. Karaki, M. Adachi, Zero temperature compensated microwave dielectric properties of Ca_{0.8}Sr_{0.2}TiO₃-Li_{0.5}Ln_{0.5}TiO₃ system, Ferroelectrics 378 (2009) 1–7.
- [8] H.J. Lee, I.T. Kim, K.S. Hong, Dielectric properties of AB2O6 compounds at microwave frequencies (A=Ca, Mg, Mn, Co, Ni, Zn,

- and B=Nb, Ta), Japanese Journal of Applied Physics Part 2—Letters 36 10A (1997) L1318–L1320.
- [9] R.C. Pullar, J.D. Breeze, N.M. Alford, Characterization and microwave dielectric properties of M²⁺Nb₂O₆ ceramics, Journal of the American Ceramic Society 88 (9) (2005) 2466–2471.
- [10] Y.C. Zhang, J. Wang, Z.X. Yue, Z.L. Gui, L.T. Li, Effects of Mg²⁺ substitution on microstructure and microwave dielectric properties of (Zn_{1-x}Mg_x)Nb₂O₆ ceramics, Ceramics International 30 (1) (2004) 87–91.
- [11] Y.C. Zhang, Z.X. Yue, X.W. Qi, B.R. Li, Z.L. Gui, L.T. Li, Microwave dielectric properties of Zn(Nb_{1-x}Ta_x)₂O ceramics, Materials Letters 58 (7–8) (2004) 1392–1395.
- [12] B.W. Hakki, P.D. Coleman, A dielectric resonator method of measuring inductive capacities in them millimeter range, IEEE Transactions on Microwave Theory and Techniques (1960) 402–410.
- [13] W.E. Courtney, Analysis and evaluation of a method of measuring the complex permitvity of microwave insulators, IEEE Transactions on Microwave Theory and Techniques 18 (8) (1970) 476–485.
- [14] Y. Kobayashiy, M. Katoh, Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method, IEEE Transactions on Microwave Theory and Techniques 33 (1985) 586–592.
- [15] R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallographica Section A 32 (5) (1976) 751–767.
- [16] A.E. Paladino, Temperature-compensated MgTi₂O₅–TiO₂ dielectrics, Journal of the American Ceramic Society 54 (3) (1971) 168–169.
- [17] M.G. Todd, F.G. Shi, Validation of a novel dielectric constant simulation model and the determination of its physical parameters, Microelectronics Journal 33 (8) (2002) 627–632.
- [18] S.H. Yoon, G.-K. Choi, D.-W. Kim, S.-Y. Cho, K.S. Hong, Mixture behavior and microwave dielectric properties of (1-x)CaWO₄-xTiO₂, Journal of the European Ceramic Society 27 (8-9) (2007) 3087–3091.
- [19] K. Fukuda, R. Kitoh, I. Awai, Microwave characteristics of TiO₂-Bi₂O₃ dielectric resonator, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes and Review Papers 32 (10) (1993) 4584-4588.