

Available online at www.sciencedirect.com

SciVerse ScienceDirect

CERAMICSINTERNATIONAL

Ceramics International 39 (2013) 3849-3856

www.elsevier.com/locate/ceramint

Effects of addition of seed grains on morphology and yield of boron carbide powder synthesized by carbothermal reduction

Tomohiro Kobayashi^{a,*}, Katsumi Yoshida^b, Toyohiko Yano^b

^aDepartment of Nuclear Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8550, Japan

^bResearch Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8550, Japan

Received 31 July 2012; received in revised form 11 October 2012; accepted 18 October 2012 Available online 26 October 2012

Abstract

 B_4C powders were synthesized by carbothermal reduction using mixtures of B_2O_3 , carbon black, and B_4C seed grains, and the effects of addition of B_4C seed grains on the morphologies and yields of the synthesized B_4C powders were investigated. The B_4C particles added to the starting mixture of B_2O_3 and C acted as seeds for crystal growth, resulting in an improvement in the B_4C yield. The B_4C yields of the products obtained by heat-treatment at 1450 °C increased with increasing amounts of B_4C seed grains. In the case of heat-treatment at 1550 and 1750 °C, the B_4C yields of the products increased with the amount of seed grains up to a certain B_4C -seed/ B_2O_3 ratio, and then decreased slightly above that ratio. The B_4C yields improved significantly compared with those obtained under the same conditions without seeds in the case of heat-treatment at 1450 °C (B_4C -seed/ B_2O_3 ratio > 0.05) and at 1550 °C. Truncated octahedral B_4C particles could be synthesized selectively by addition of small B_4C seeds and heat-treatment at 1450–1750 °C. The particle size of the synthesized at 1450 and 1550 °C were polyhedral, and the morphologies of the B_4C particles synthesized at 1750 °C were dendrite-like and polyhedral. In the case of addition of larger amounts of seeds, the morphologies of the B_4C particles synthesized at 1450–1750 °C were mainly truncated octahedral.

© 2012 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: A. Grain growth; B. Crystal morphology; D. Carbides

1. Introduction

Boron carbide (B_4C) has excellent properties such as a light weight, superior hardness, high elastic modulus, high thermal stability, and large neutron absorption cross-section, therefore B_4C has been used for armor materials, wear-resistance parts, grinding media, and neutron absorbers of control rods for nuclear fission reactors [1]. In addition, its application in fast-moving parts of semi-conductor manufacturing equipment has been studied in recent years because of its superior rigidity.

Microstructural control of sintered materials and powder, such as control of grain size and morphology, is required to improve the sinterability and properties of

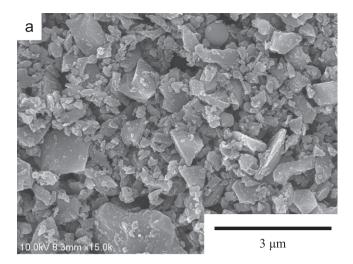
*Corresponding author. Tel.: +81 3 5734 3082.

E-mail address: kobayashi.t.bc@m.titech.ac.jp (T. Kobayashi).

ceramics. In the synthesis of B₄C powder, changes in morphology and particle size have been reported by several researchers, for example, by carbothermal reduction [2–6] of mixtures of B₂O₃ and carbon, sol-gel methods [7-9], and borate precursor methods [10-12]. However, there have been very few studies giving details of the effects of synthesis conditions on the morphologies and particle sizes of the synthesized B₄C powders and their growth mechanisms, because these studies have mainly focused on reduction of residual carbon and lowering the heat-treatment temperature of B₄C synthesis. In our previous work, the effects of heat-treatment temperature and composition of the starting mixture of B₂O₃ and carbon black on the morphology of B₄C particles were studied, and it was clarified that the heat-treatment temperature and the composition affected the number of B₄C nuclei and the morphology of the B₄C grains, respectively [6]. The B₄C powder obtained in the previous work consisted of various kinds of polyhedra and had a large particle size.

In this study, carbothermal reduction using a mixture of B_2O_3 and carbon black with B_4C seed grains is used for the synthesis of B_4C powder, and the effects of seed grains on the yield and morphology of the synthesized B_4C powder are investigated. It was shown that the morphology of the synthesized B_4C particles was mostly truncated octahedral, and the particle size of the powder was controlled by the amount of seeds. Furthermore, the yield of B_4C improved significantly as a result of the addition of seed grains.

2. Materials and methods


B₂O₃ (boron trioxide, 97% purity, Kanto Chemical Co., Inc., Japan) and carbon black (Asahi Thermal, average particle size: 80 nm, Asahi Carbon Co., Ltd., Japan) were used as the starting materials. Commercial B₄C powders with different particle sizes were used as seed grains. B₄C powders with a particle size of 0.8 µm (#1200, Denka-Boron, Denki Kagaku Kogyo Kabushiki Kaisha, Japan) and with a particle size of 10 µm (Kojundo Chemical Laboratory Co., Ltd., Japan) are designated as small seed grains and large seed grains, respectively [shown in Fig. 1(a) and (b)]. The B/C ratio of the mixture was fixed to be $B_2O_3/C=1.66$ by weight, which is the stoichiometric composition of the carbothermal reduction (reaction 1). The amount of seed grains in the mixture was changed from a weight ratio of B_4C -seed/ $B_2O_3=0.01$ to B_4C -seed/ B₂O₃=0.20. B₂O₃, carbon black, and B₄C powder were mixed in ethanol using a silicon carbide mortar for 1 h. The powder mixtures were put in graphite crucibles separately, and heat-treated at 1450-1750 °C for 3 h at a heating rate of 30 °C/min in an Ar flow (2 L/min) using a graphite heater furnace (Hi-Multi 5000, Fuji Dempa Kogyo Co., Ltd., Japan). The crystalline phases of the powders synthesized in this study were identified by X-ray diffractometry (XRD; PW-1700, Philips, The Netherlands) using monochromated CuKa radiation. The particle morphology was observed with a scanning electron microscope equipped with a field-emission gun (FE-SEM; S-4800, Hitachi High-Technologies Corp., Japan).

$$2B_2O_3 + 7C \rightarrow B_4C + 6CO$$
 (1)

The B_4C product yield was estimated from the amount of synthesized B_4C using Eq. (2)

$$B_4C \text{ yield} = \frac{F_f W_f - F_i W_i}{W_{B4C,th}}$$
 (2)

where F and W are the B_4C content and the weight of the product, respectively. The subscripts i and f indicate the B_4C content and weight of the product before and after the heat-treatment. $W_{B4C,th}$ is the ideal weight of B_4C synthesized using the mixture. The amount of B_4C was estimated from the XRD peak intensity of the products using a standard calibration curve. The volatilization loss of B_2O_3 from the mixture during heat-treatment was estimated from

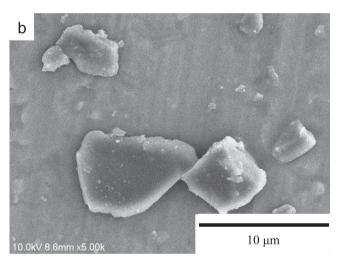


Fig. 1. B_4C seed grains used in this study: (a) small grains and (b) large grains.

the amount of synthesized B_4C and Eq. (3), which is a modification of reaction (1)

$$2B_2O_3 + 7C \rightarrow xB_4C + 6xCO \uparrow + 2(1-x)B_2O_3 \uparrow + 7(1-x)C$$
(3)

where x (B₄C yield) is less than 1.

3. Results and discussion

3.1. Crystalline phase and B_4C yield in reaction products

Fig. 2 shows XRD patterns of the powders heat-treated at 1550 °C with B_4C -seed/ B_2O_3 =0.01–0.20, using small B_4C seed grains. For comparison, the XRD pattern of a synthesized powder without seed addition is also shown in Fig. 2. The XRD analysis shows that the powder products obtained by heat-treatment at 1550 °C consisted of B_4C and C. The intensity of the strongest peak, at 2θ = 26°, derived from C in the products, decreased with increasing amounts of B_4C seed grains up to B_4C -seed/ B_2O_3 =0.10, and the intensity of the C peak for B_4C -seed/ B_2O_3 =0.20

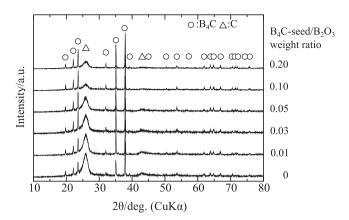


Fig. 2. X-ray diffraction patterns of products obtained by heat-treatment at 1550 $^{\circ}$ C using mixtures with B₄C-seed/B₂O₃=0-0.20 (small B₄C seed grains).

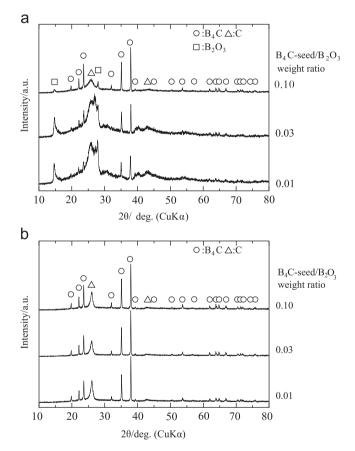


Fig. 3. X-ray diffraction patterns of products obtained by heat-treatment at (a) 1450 °C and (b) 1750 °C using mixtures with B_4C -seed/ B_2O_3 =0.01, 0.03, and 0.10 (small B_4C seed grains).

was almost the same as that for $B_4C\text{-seed}/B_2O_3=0.10$. Fig. 3(a) and (b) shows the XRD patterns of the powders heat-treated at 1450 and 1750 °C with $B_4C\text{-seed}/B_2O_3=0.01$, 0.03, and 0.10, using the small B_4C seed grains. Residual B_2O_3 existed in the product for all compositions after heat-treatment at 1450 °C, and the intensity of the peaks from B_2O_3 gradually decreased with increasing amounts of seed grains. The powder heat-treated at 1750 °C for mixtures of

all compositions consisted of B_4C and C. Up to B_4C -seed/ $B_2O_3\!=\!0.03$, the intensity of the C peak in the products decreased, and beyond 0.03, it was almost constant.

Fig. 4(a) shows the changes in B_4C yield for the powder heat-treated at 1450-1750 °C as a function of the amounts of small and large seed grains. These values did not include the amount of seed grains added to the raw mixture. The B₄C yield of the powder heat-treated at 1450 °C increased with increasing amounts of B₄C seed grains (small). The B₄C yields of the powders heat-treated at 1550 °C and 1750 °C increased with the amount of small seed grains up to a certain B₄C-seed/B₂O₃ ratio, and then decreased slightly above that ratio. The B₄C-seed/B₂O₃ ratio for the maximum B₄C yield moved to lower seed contents with increasing heat-treatment temperature, as shown in Fig. 4(a). Furthermore, at a heat-treatment temperature of 1450 °C, a certain amount of B₄C seeds was necessary to improve the B₄C yield compared to the yield of the powder obtained without seeds. The effect of seed addition on

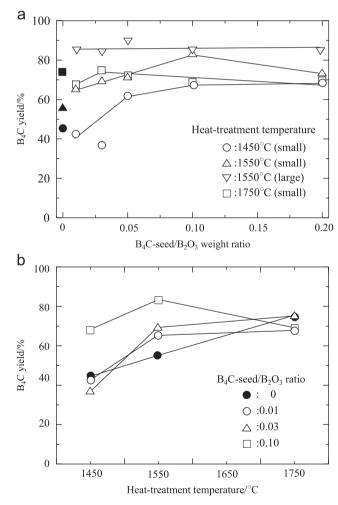


Fig. 4. (a) Changes in B_4C yields of products synthesized at 1450 (\bigcirc), 1550 (\triangle), and 1750 °C (\square) (small seeds), and 1550 °C (∇) (large seeds) as a function of B_4C -seed/ B_2O_3 . Filled symbols indicate B_4C yields of the products without seeds synthesized at 1450 (\bullet), 1550 (\blacktriangle), and 1750 °C (\blacksquare). (b) Changes in B_4C yields of the products synthesized using mixtures with B_4C -seed/ $B_2O_3=0$ (\bullet), 0.01 (\bigcirc), 0.03 (\triangle), and 0.10 (\square) as a function of the heat-treatment temperature (small B_4C seed grains).

improvement of the B₄C yield disappeared for heattreatment at 1750 °C. As shown in Fig. 4(a), the yields of products obtained by heat-treatment at 1550 °C using larger seeds varied from 83% to 89%, regardless of the amount of seeds added. These values were slightly higher than that of the product obtained using smaller seeds with B_4C -seed/ $B_2O_3=0.10$, in spite of the low number density of the seeds. No effect of seed number density on the B₄C yield is seen in the case of large seeds. Fig. 4(b) shows changes in the B₄C vields of the powder heat-treated with various B₄C-seed/B₂O₃ ratios (small seed grains) as a function of the heat-treatment temperature. The amounts of B₄C in the products using mixtures with B₄C-seed/ $B_2O_3=0$, 0.01, and 0.03 increased with increasing heat-treatment temperature. In the case of B₄C-seed/ $B_2O_3=0.10$, the B_4C yield of the product heat-treated at 1750 °C was lower than that of the powder heat-treated at 1550 °C. The effect of seed addition on the B₄C yield was significant for heat-treatment at 1550 °C.

The calculated volatilization losses of B₂O₃ from the mixtures during heat-treatment (1550 °C and 1750 °C) are shown in Fig. 5. The calculated volatilization losses consist of B₂O₃ gas and B-O gas species generated by reactions of B₂O₃ and B₄C [13]. The calculated losses of the products obtained using large seeds are also shown in Fig. 5, and were almost constant, regardless of the amount of large seeds added. As shown in Figs. 4(a) and 5, the yields of the products obtained by heat-treatment at 1550 °C with B₄C $seed/B_2O_3 = 0.01$ and 0.03, using small seeds, were lower than those of the products obtained by heat-treatment at 1750 °C using the same compositions, and the calculated losses from the mixtures during heat-treatment at 1550 °C were higher than those of the mixtures during heattreatment at 1750 °C. Beyond B_4C -seed/ $B_2O_3 = 0.10$, the changes in the yields and the calculated losses showed the opposite tendency. In contrast, in the case of synthesis from a B₂O₃-C mixture without seeds, the calculated volatilization losses of B2O3 decreased with increasing heat-treatment temperature [6]. These results suggest that the increase in the losses at higher B₄C-seed/B₂O₃ ratios

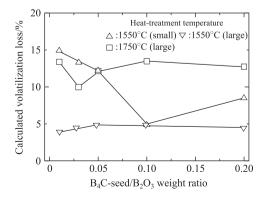


Fig. 5. Calculated volatilization losses of B_2O_3 from mixtures with various B_4C -seed/ B_2O_3 ratios during heat-treatment at 1550 (\triangle) and 1750 °C (\square) (small seeds), and 1550 °C (∇) (large seeds).

and heat-treatment temperature may be caused by generation of B_2O_2 gas by a reaction between B_4C and B_2O_3 [13], and B_2O_2 gas does not contribute to the production of B_4C .

3.2. Effect of amount of seed grains on morphology of synthesized B_4C

Fig. 6(a)–(e) is SEM images of B₄C powders synthesized at 1550 °C from mixtures with B₄C-seed/B₂O₃ ratios of 0.01–0.20, using small seeds. The primary B₄C particles aggregated with each other and formed large agglomerations (tens of micrometers) for B₄C-seed/B₂O₃ ratios of 0.01–0.20. In the case of B_4C -seed/ $B_2O_3=0.01$, small B_4C particles, as well as larger B₄C particles, were observed in the product, and the B₄C powder consisted of polyhedral particles, such as truncated octahedra and twinned octahedra. Beyond a B₄C-seed/B₂O₃ ratio of 0.03, the morphology of the B₄C powder was mainly truncated octahedral, and rarely octahedral. The edges of several B₄C particles in the product of B_4C -seed/ $B_2O_3=0.20$ were rounded. The particle size of the synthesized B₄C powder decreased slightly with increasing amounts of added seeds. In previous work, the morphology of B₄C powder synthesized at the same temperature, using a B₂O₃-carbon black mixture without B₄C seed grains, was a mixture of various kinds of polyhedra and the particle size was much larger ($\sim 44 \,\mu m$) than that of the B₄C powder obtained in this study [6]. This is the first report of selective synthesis of truncated octahedral B₄C particles.

Fig. 6(f) shows a SEM image of the B₄C powder synthesized at 1550 °C, using large seed gains, with B₄Cseed/ $B_2O_3=0.10$. The particle size of the synthesized B_4C powder was about 10 µm, and the morphology was mainly truncated octahedral. The morphology of the B₄C synthesized using large seed grains was same as that using small seed grains; however, the particle size of the powder using large seeds was much larger than that of the powder using small seeds, although the weight ratios of B₄C-seed/B₂O₃ were the same. The SEM observations show that the particle size of the synthesized B₄C powder decreased with increasing added amounts of B₄C seed grains. When the B₄C-seed/B₂O₃ weight ratios were the same, the particle size of the synthesized B₄C depended on the particle size of the B₄C seed grains. The number density of the B₄C seeds is very low in the case of large seeds, and a larger number of B₄C nuclei may deposit on each seed grain compared with the case of small seeds with large surface areas, so the particle size of the synthesized B₄C increases significantly.

Fig. 7 shows schematic illustrations of the B_4C particles observed in the product synthesized at 1550 °C with B_4C -seed/ B_2O_3 =0.10 (large seeds). The sketches in the upper row and the lower row are of the same B_4C crystals viewed from different directions. Fig. 7 shows that if two or four planes of the octahedron [Fig. 7(a)] become larger, and are located on the opposite sides of a crystal, the octahedron can be viewed as a plate-like [Fig. 7(b)] or rod-like particle

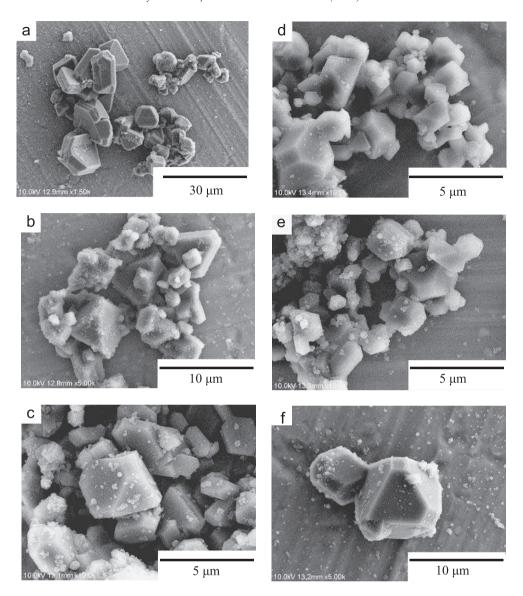


Fig. 6. Scanning electron micrographs of B_4C powders synthesized at 1550 °C using mixtures with B_4C -seed/ B_2O_3 =(a) 0.01, (b) 0.03, (c) 0.05, (d) 0.10, and (e) 0.20 (small B_4C seed grains), and (f) with B_4C -seed/ B_2O_3 =0.10 (large B_4C seed grains).

[Fig. 7(c)]. The synthesized B₄C particles consisted mainly of truncated octahedra, and rarely of thick or thin plate- and rod-like particles. This change in crystal habit may be caused by differences in the growth conditions and morphologies of the seeds. It is known that calcite and hematite, whose crystal systems are the same as that of B₄C, also show similar polyhedral and plate-like particles [14]. In addition, the planes with smaller surface areas in these B₄C particles vanished and the edges were crossed, so the morphology of the B₄C crystal could be viewed as rhombohedral.

3.3. Effect of heat-treatment temperature on morphology of synthesized B_4C

Fig. 8(a)–(c) shows SEM images of the B_4C powder synthesized at 1450 °C using mixtures with B_4C -seed/ B_2O_3 =0.01, 0.03, and 0.10 (small seed grains). The

morphologies of the synthesized B₄C particles with B₄C $seed/B_2O_3=0.03$ and 0.10 were mainly truncated octahedral. The B_4C powder with B_4C -seed/ $B_2O_3=0.01$ consisted of polyhedral particles and the particles were larger than those of the B₄C powders with B₄C-seed/B₂O₃=0.03–0.20. As indicated by the existence of residual B₂O₃ in the products obtained by heat-treatment at 1450 °C [Fig. 3(a)], a number of carbon deposits were also observed by SEM as small particles of size less than 0.3 µm. The morphologies of the B₄C particles synthesized at 1450 °C and 1550 °C using a mixture with B₄C-seed/B₂O₃=0.01 frequently showed twins, and the percentage of twinned particles in the synthesized B₄C increased with increasing particle size of the synthesized B₄C powder. When a crystal grows in a highly supersaturated solution, twins are easily generated, since a large number of nuclei are present on a seed grain. In the crystal growth of B₄C from B₄C seeds,

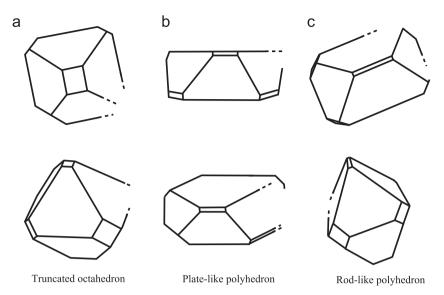


Fig. 7. Schematic illustrations of synthesized B_4C particles observed in the product obtained by heat-treatment at 1550 °C with B_4C -seed/ B_2O_3 =0.10 (large B_4C seed grains).

the amount of adsorbed B_4C nuclei per seed grain increases with decreasing B_4C -seed/ B_2O_3 weight ratio, and this condition corresponds approximately to supersaturation of B_4C nuclei in liquid B_2O_3 .

SEM images of B₄C powders synthesized at 1750 °C using mixtures with B_4C -seed/ $B_2O_3=0.01$, 0.03, and 0.10 (small seed grains) are shown in Fig. 8(d)–(f). In the case of B_4C -seed/ $B_2O_3=0.01$, two types of particle morphology were observed. One was dendrite-shaped aggregates of small B₄C particles, which was similar to the morphology of B₄C particles synthesized from B₂O₃-carbon black without seeds at the same temperature, reported in a previous study [6]. The high nucleation growth rate at this temperature should result in rapid production of numerous B₄C nuclei, resulting in relatively small primary particles [3,6]. The other was large polyhedral B₄C particles. The B₄C particles synthesized using a mixture with B₄C-seed/ $B_2O_3 = 0.03$ mainly consisted of truncated octahedral grains. Beyond B_4C -seed/ $B_2O_3 = 0.10$, the edges of the synthesized B₄C particles were rounded. A similar phenomenon was observed in our previous study for B₄C particles synthesized using excess B₂O₃ [6]. This morphology change depending on the B₄C-seed/B₂O₃ weight ratio corresponds to the increase in the calculated volatilization loss (Fig. 5). The change in morphology and suppression of the yield of B₄C in the products synthesized at higher B₄C-seed/B₂O₃ weight ratios could therefore be caused by reaction between B₄C and B₂O₃. In addition, when the starting composition of the mixture using large seeds was changed to a B₂O₃-rich composition (B₂O₃/C weight ratio=2.9, B_4C -seed/ B_2O_3 =0.10), and the mixture was heat-treated at 1750 °C for 3 h, the edges of the B₄C particles became rounded and the morphology was very different from that of the product from the mixture with $B_2O_3/C = 1.66$ (Fig. 9).

4. Conclusions

 B_4C powders were synthesized by a carbothermal reduction method using mixtures of B_2O_3 , carbon black, and B_4C seed grains, and the effects of addition of B_4C seed grains on the yields and morphologies of the B_4C powders were investigated.

The B₄C particles added to the starting mixture of B₂O₃ and C acted as seeds for crystal growth, resulting in an improvement in the B₄C yields. The powder products obtained by heat-treatment at 1550 and 1750 °C consisted of B₄C and residual carbon. Residual B₂O₃ was also present in the powder after heat-treatment at 1450 °C. The B₄C yields of the products obtained by heat-treatment at 1450 °C using smaller seeds increased with increasing amounts of B₄C seed grains. In the case of heat-treatment at 1550 and 1750 °C using smaller seeds, the B₄C yields of the products increased with the amount of seed grains up to a certain B₄C-seed/B₂O₃ ratio, and then decreased slightly above that ratio. The B₄C yields improved significantly compared with those obtained under the same synthesis conditions without seeds in the case of heattreatment at 1450 °C (B_4C -seed/ B_2O_3 ratio > 0.05) and at 1550 °C. In the case of addition of larger seeds, the yields of the products obtained by heat-treatment at 1550 °C were comparable to those obtained using smaller seeds, with B_4C -seed/ $B_2O_3=0.10$, regardless of the added amount.

Truncated octahedral B_4C particles were synthesized selectively by addition of B_4C seed grains over a wide range of heat-treatment temperatures. The particle size of the B_4C powder decreased with increasing amounts of added B_4C seed grains. In the case of addition of smaller amounts of seed grains, the morphologies of the B_4C particles synthesized at 1450 and 1550 $^{\circ}C$ were polyhedral,

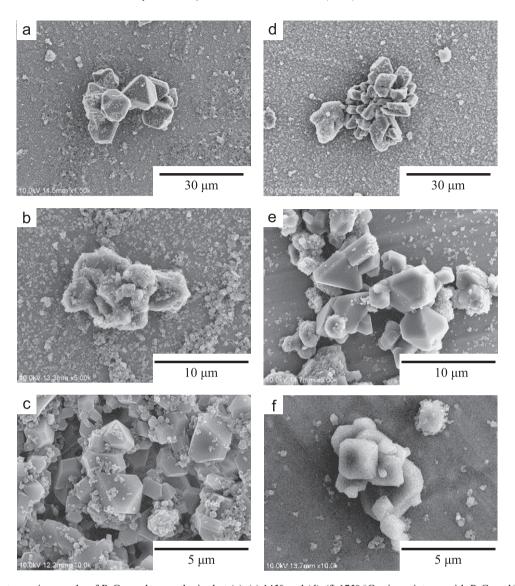


Fig. 8. Scanning electron micrographs of B_4C powders synthesized at (a)–(c) 1450 and (d)–(f) 1750 $^{\circ}C$ using mixtures with B_4C -seed/ B_2O_3 =(a), (d) 0.01; (b), (e) 0.03; and (c), (f) 0.10 (small B_4C seed grains).

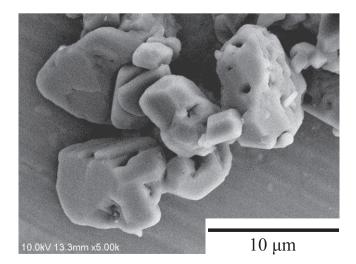


Fig. 9. Scanning electron micrograph of B_4C powder synthesized at 1750 °C using a mixture with $B_2O_3/C\!=\!2.90$ and B_4C -seed/ $B_2O_3\!=\!0.10$ (large B_4C seed grains).

e.g., truncated octahedra and their twins, and the morphologies of the B_4C particles synthesized at 1750 °C were dendrite-like and polyhedral. In the case of addition of larger amounts of seed grains, the morphologies of the B_4C particles synthesized at 1450–1750 °C were mainly truncated octahedral and thick plate-like.

References

- [1] F. Thevenot, Boron carbide—a comprehensive review, Journal of the European Ceramic Society 6 (1990) 205–225.
- [2] C. Motoc, F. Constantinescu, Growth and thermal etching of boron carbide, Journal of Crystal Growth 18 (1973) 29–33.
- [3] A.W. Weimer, W.G. Moore, R.P. Roach, J.E. Hitt, R.S. Dixit, S.E. Pratsinis, Kinetics of carbothermal reduction synthesis of boron carbide, Journal of the American Ceramic Society 75 (1992) 2509–2514.
- [4] C.H. Jung, M.J. Lee, C.J. Kim, Preparation of carbon-free B_4C powder from B_2O_3 oxide by carbothermal reduction process, Materials Letters 58 (2004) 609–614.

- [5] A. Alizadeh, E. Taheri-Nassaj, N. Ehsani, Synthesis of boron carbide powder by a carbothermic reduction method, Journal of the European Ceramic Society 24 (2004) 3227–3234.
- [6] T. Kobayashi, K. Yoshida, T. Yano, Effects of heat-treatment temperature and starting composition on morphology of boron carbide particles synthesized by carbothermal reduction, Ceramics International 39 (2013) 597–603, http://dx.doi.org/10.1016/j.cera mint.2012.06.070.
- [7] A. Sinha, T. Mahata, B.P. Sharma, Carbothermal route for preparation of boron carbide powder from boric acid-citric acid gel precursor, Journal of Nuclear Materials 301 (2002) 165–169.
- [8] A.M. Hadian, J.A. Bigdeloo, The effect of time, temperature and composition on boron carbide synthesis by sol–gel method, Journal of Materials Engineering and Performance 17 (2008) 44–49.
- [9] S. Mondal, A.K. Banthia, Low-temperature synthesized route for boron carbide, Journal of the European Ceramic Society 25 (2005) 287–291.

- [10] I. Yanase, R. Ogawara, H. Kobayashi, Synthesis of boron carbide powder from polyvinyl borate precursor, Materials Letters 63 (2009) 91–93.
- [11] M. Kakiage, N. Tahara, I. Yanase, H. Kobayashi, Low-temperature synthesis of boron carbide powder from condensed boric acid glyceric product, Materials Letters 65 (2011) 1839–1841.
- [12] M. Kakiage, N. Tahara, S. Yanagidani, I. Yanasea, H. Kobayashi, Effect of boron oxide/carbon arrangement of precursor derived from condensed polymer–boric acid product on low-temperature synthesis of boron carbide powder, Journal of the Ceramic Society of Japan 119 (2011) 422–425.
- [13] V.D. Derkach, S.P. Gordienko, B.V. Fenochka, A.P. Epik, N.F. Kolesnik, Composition of the gaseous phase over the system B₄C–B₂O₃, Powder Metallurgy and Metal Ceramics 10 (1971) 301–303.
- [14] E.S. Dana, W.E. Ford, A Textbook of Mineralogy, fourth ed., John & Wiley Sons, 1959.