

Available online at www.sciencedirect.com

SciVerse ScienceDirect

CERAMICSINTERNATIONAL

Ceramics International 39 (2013) 6713-6720

www.elsevier.com/locate/ceramint

Effect of strontium and phosphorus source on the structure, morphology and luminescence of Sr₅(PO₄)₂SiO₄:Eu²⁺ phosphor prepared by solid-state reaction

Keke Huang, Taoli Deng, Shirun Yan*, Jianguo Hu

Department of Chemistry and Fudan-Keheng Research Center for Luminescent Materials, Fudan University, Shanghai 200433, PR China
Received 17 January 2013; received in revised form 31 January 2013; accepted 31 January 2013
Available online 7 February 2013

Abstract

Sr₅(PO₄)₂SiO₄:Eu²⁺ phosphosilicate phosphor was prepared by high temperature solid-state reaction. Effects of strontium sources (strontium oxide, strontium nitrate and strontium carbonate) and of phosphorus sources (diammonium phosphate, strontium monophosphate) on the reactivity of their mixture during heating and on phase composition, morphology and photoluminescence excitation and emission properties of the phosphors were investigated by TG–DTG–DSC, XRD, SEM and photoluminescence spectroscopy. The sequence of the solid-state reactions when using the different starting reagents was discussed based on the TG–DTG–DSC results. It was found that it is hard to prepare pure Sr₅(PO₄)₂SiO₄:Eu²⁺ phosphor with either of strontium sources studied when stoichiometric (NH₄)₂HPO₄ was used as a phosphorus source. Minor Sr₂SiO₄ impurity phase was present in the phosphors. The content of impurity phase, the morphology and resultant photoluminescence properties of the phosphors were markedly influenced by the strontium source employed. When SrCO₃ was used as the strontium source, the phase purity of the phosphor was improved with the addition of excess (NH₄)₂HPO₄. When (NH₄)₂HPO₄with 5% excess or SrHPO₄ in stoichiometric ratio was used as the phosphorus source a pure phase phosphor was obtained. In addition, the morphology and photoluminescence of the phosphor were also influenced by phosphorus source. The possible reasons causing different properties of the phosphors prepared using different raw materials were discussed based on reaction schemes.

© 2013 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: Sr₅(PO₄)₂SiO₄:Eu²⁺ phosphor; Strontium and phosphorus source; Structure; Morphology; Photoluminescence

1. Introduction

In recent years, growing interest has been focused on phosphor converted white light-emitting diodes (pc-WLEDs) for lighting because of their advantages of energy-saving, reliability, maintenance and safety [1,2]. Of the two alternative approaches to assemble pc-WLEDs, the nUV chip coated with blend of tri-chromatic phosphors or single-phased full-color phosphor approach is considered more competitive in terms of color uniformity, color rendition and long term color stability. Since nUV (350–420 nm) radiation of the chip is not perceived well by human eye, the emission color of WLED is controlled only by the phosphors [3]. On the other hand, the efficacy of

WLEDs based on nUV chip is lower than that based on the blue platform mainly owing to Stokes shift losses. It is of great significance to find novel efficient phosphors that are able to absorb nUV light and convert it into a visible light with suitable spectrum. For this purpose, various silicate and nitride [2,4–9], phosphate [10–16], and phosphosilicate [17–22] singly doped with Eu²⁺ or Ce³⁺ or doubly-doped with Eu²⁺ and Mn²⁺ have been studied extensively as nUV pumping phosphors. The structure, photoluminescence mechanism and properties, as well as temperature-dependent photoluminescence in these phosphors have been investigated thoroughly. To be a phosphor candidate for actual application in pc-WLEDs, in addition to having a suitable shape and position of the emission and excitation spectra and good thermal quenching behavior, high external quantum efficiency is of the utmost importance to efficacy of the WLEDs. The quantum efficiency

^{*}Corresponding author. Tel./fax: +86 21 65643987.

E-mail addresses: sryan@fudan.edu.cn, yanshirun@126.com (S. Yan).

of a phosphor is dependent on not only the internal quantum efficiency but also the absorbed fraction of the excitation light [23]. The absorption of excitation light is mainly influenced by dopant concentration and phase purity of a phosphor, the physical parameters of a phosphor such as, morphology, particle size and particle size distribution play an important role as well. In general, conversion phosphors for WLED are fabricated by solid-state reaction methods, the types of ingredient species employed may influence the reaction and nucleation mechanism and hence physicochemical and photoluminescence properties of the phosphors [24]. Therefore, investigation and understanding of the influence of raw materials and manufacturing process on the structure and property of the phosphor is of great industrial importance.

Sr₅(PO₄)₂SiO₄:Eu²⁺ is a green emitting phosphor with an apatite structure firstly reported by Blasse and Bril in 1969 [25]. It was recently reported that Sr₅(PO₄)₂SiO₄:Eu²⁺ was a potential candidate phosphor for nUV–WLED efficiently excitable in the wavelength range of 250–440 nm [19–21]. Synthesis of Sr₅(PO₄)₂SiO₄:Eu²⁺ involved in the introduction and reactions of strontium, phosphorus and silica species. In this work, the Sr₅(PO₄)₂SiO₄:Eu²⁺ phosphor was prepared by solid-state reaction with different strontium [SrO, SrCO₃, Sr(NO₃)₂] and phosphorus [(NH₄)₂HPO₄ and SrHPO₄] sources. The effects of strontium and phosphorus source on the reactivity of their mixture during heating and resultantly on the structure, morphology and photoluminescence excitation and emission properties of the phosphor were investigated.

2. Experimental

The phosphor with a composition of $Sr_{4.94}$ (PO₄)₂SiO₄: $Eu_{0.06}^{2+}$ was prepared by a solid-state reaction technique. The starting materials were $SrCO_3$ (99%), SrO (99%), $Sr(NO_3)_2$ (>98%), SiO_2 (99.9%), $(NH_4)_2HPO_4$ (>99%), $SrHPO_4$ (99%), Eu_2O_3 (99.99%) and NH_4HF_2 (>98%). Assay was run on SiO_2 to compensate for sorbed water. The required amount of raw materials and NH_4HF_2 flux in amount of 1 wt% of the phosphor batch were thoroughly mixed and ground in an agate mortar.

Thermal analysis of the intimate mixture of raw materials was performed in a TA SDT Q600 instrument in air at a heating rate of 10 °C/min from room temperature up to 1300 °C. The instrument used in the investigations allows to carry out thermo gravimetric (TG), differential thermo gravimetric (DTG) and differential scanning calorimetric (DSC) analyses simultaneously.

Based on the thermal analysis results, the firing procedure of the intimate mixture of the starting reagents was determined. It was fired in air at 350 and 850 °C for 5 h with milling between two firing steps. The resultant powder was finally fired at 1350 °C in a $\rm H_2/N_2$ atmosphere (5vol% of $\rm H_2$) for 15 h. The sample was then allowed to cool in the reducing atmosphere to room temperature.

The X-ray diffraction (XRD) patterns of the phosphors were recorded on a Bruker D8 advance diffractometer with

Cu K α radiation (λ =0.15418 nm) operated at 40 mA and 40 kV. The scanning electron microscopy (SEM) images of the phosphors were recorded on a Philips XL-30 scanning electron microscope. The photoluminescence excitation (PLE) and emission (PL) spectra of the phosphors were recorded using a Hitachi F-4500 fluorescence spectrophotometer at room temperature.

3. Results and discussion

3.1. Effect of strontium sources

Fig. 1 shows TG-DTG-DSC profiles of the stoichiometric mixture Sr_{4.94}(PO₄)₂SiO₄:Eu_{0.06} of raw materials with different strontium sources using diammonium phosphate as the phosphorus source. When SrO was used as the strontium source, small endothermic and exothermic peaks accompanied by obvious weight loss steps appeared at temperature ranges of 140–210 (weight loss about 15%), 400-500 (weight loss about 5%) and 800-890 °C (weight loss about 3%), respectively. Since the ingredients SrO, SiO₂ and Eu₂O₃ were stable during heating, the species decomposable in the mixture were (NH₄)₂HPO₄ and NH₄HF₂ flux. Given that the amount of flux was only 1% of the total mixture, the weight losses in TGA curve should be ascribed to the degradation and decomposition of (NH₄)₂HPO₄ and subsequent reactions between degraded species and other ingredients in the mixture. It was seen from the DSC curve that highly exothermic reactions of ingredients took place at temperature range of 800-1300 °C. Based on the

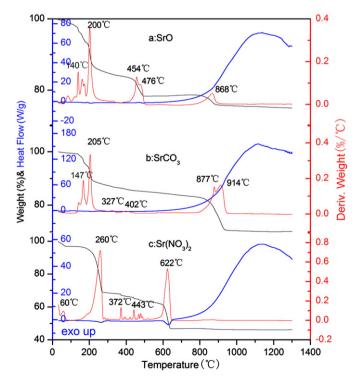


Fig. 1. TG-DTG-DSC profiles of stoichiometric mixture of raw materials with different strontium sources.

TG-DTG-DSC results and the chemistry of alkaline earth phosphates [26], the sequence of solid-state reactions taking place at different temperature ranges during heating of the stoichiometric mixture using SrO as the strontium source was proposed in the following equations:

$$(NH4)2HPO4 \xrightarrow{\sim 140 \, ^{\circ}C} H3PO4 + 2NH3$$
 (1)

$$3H_3PO_4 + 2SrO \xrightarrow{140-200 \text{ °C}} SrHPO_4 + Sr(H_2PO_4)_2 + 2H_2O$$
 (2)

$$2SrHPO_4 \xrightarrow{450-480^{\circ}C} Sr_2P_2O_7 + H_2O$$
 (3)

$$Sr(H_2PO_4)_2 \xrightarrow{450-480^{\circ}C} SrH_2P_2O_7 + H_2O$$
 (4)

$$2SrO + SiO_2 \xrightarrow{\sim 800 - 1300^{\circ}C} Sr_2SiO_4$$
 (5)

$$Sr_{2}SiO_{4} + 5/3SrO + 1/3Sr_{2}P_{2}O_{7} + 2/3SrH_{2}P_{2}O_{7} \xrightarrow{\sim 800 - 1300^{\circ}C}$$

$$Sr_{5}(PO_{4})_{2}SiO_{4} + 2/3H_{2}O$$
(6)

When SrCO₃ was used as the strontium source, two sharp weight loss steps at temperature ranges of 140-250 (weight loss about 12%) and 800-950 °C (weight loss about 13%) were observed. Other two weight loss steps with smaller weight loss percentage at temperature range of 300-450 °C were also observed in the DTG profile. No obvious weight loss was observed above 950 °C. Since both SrCO₃ and (NH₄)₂HPO₄ were reactive and degradable species, the weight loss steps in TGA curve could be ascribed to the degradation and reactions concerning (NH₄)₂HPO₄ and SrCO₃ species. Based on TG-DTG-DSC results and the chemistry of alkaline earth phosphates [26], the scheme of solid-state reactions at different temperature ranges during heating of the stoichiometric mixture using SrCO₃ as the strontium source was proposed as follows:

The initial weight loss step at 140 °C should be ascribed to the decomposition of $(NH_4)_2HPO_4$ as given in Eq. (1), followed by the reaction of H_3PO_4 with $SrCO_3$ at 200–250 °C leading to the formation of $SrHPO_4$ and $Sr(H_2PO_4)_2$ as shown in the following equation:

$$3H_3PO_4 + 2SrCO_3 \xrightarrow{\sim 200 - 250^{\circ}C} Sr(H_2PO_4)_2 + SrHPO_4 + 2CO_2 + 2H_2O$$
 (7)

Subsequently, the newly formed SrHPO₄ and Sr(H₂PO₄)₂ dehydrated at 300–450 °C, as given in Eqs. (3) and (4). The dehydration temperatures were slightly lower than the corresponding values for the case of SrO, indicating that the reactivity of SrHPO₄ and Sr(H₂PO₄)₂ formed by the reaction of H₃PO₄ with SrCO₃ was higher than that formed by the reaction with SrO. The sharp weight loss step at 800–950 °C should be ascribed to both the dehydration accompanied by the solid-state reactions concerning SrH₂P₂O₇ as shown in Eq. (6) and decarbonation of remaining SrCO₃ to give SrO as shown in Eq. (8), since the DTG profile showed two weight loss peaks. The highly exothermic solid-state reactions between newly generated species took place at 800–1300 °C which resulted in the formation of Sr₂SiO₄ and

finally of $Sr_5(PO_4)_2SiO_4$ as shown in Eqs. (5) and (6).

$$SrCO_3 \xrightarrow{\sim 800 - 950^{\circ}C} SrO + CO_2$$
 (8)

When Sr(NO₃)₂ was used as the strontium source, two big endothermic peaks accompanied by sharp weight loss steps appeared at temperature ranges of 180–280 (weight loss 28%), 600-650 °C (weight loss about 15%), respectively. Small weight loss steps were also observed at ~ 60 , 372 and 443 °C. It is interesting to note that the onset of weight loss occurred at 60 °C which was quite lower than that of SrO and SrCO₃. This is easily understood. Since both (NH₄)₂HPO₄ and Sr(NO₃)₂ were active species, the reaction between these two species as given in Eq. (9) could take place during preparing the intimate mixture by thoroughly grounding and milling of the raw materials at room temperature. The mixture might contain some NH₄NO₃ species, which was easily evaporated and decomposed at a low temperature during heating. Hence, the weight loss at 60 °C could be ascribed to the evaporation and/or decomposition of NH₄NO₃ in the mixture.

Based on the TG–DTG–DSC profiles, the main chemical reactions taking place during the heating of the stoichiometric mixture of raw materials using $Sr(NO_3)_2$ as the strontium source were proposed as follows:

The sharp weight loss at \sim 180–280 °C could be ascribed to the reaction between (NH₄)₂HPO₄ and Sr(NO₃)₂ shown in Eq. (10), followed by the stepwise decomposition of remaining $Sr(NO_3)_2$ at ~300–450 and 600–650 °C, respectively, in the way given in Eqs. (11) and (12). The SrO generated then reacted with SiO₂ at 800-1300 °C to give Sr₂SiO₄. On the other hand, the SrHPO₄ formed at 180– 260 °C dehydrated at 300–450 °C to give Sr₂P₂O₇ as shown in Eq. (3), which further reacted with SrO and Sr₂SiO₄ leading to the formation of Sr₅(PO₄)₂SiO₄ as given in Eq. (13). The fact that no weight loss was observed above 700 °C demonstrated the absence of degradable species of SrH₂P₂O₇ in the system. Hence, the solid-state reactions at higher temperature region using Sr(NO₃)₂ were different from those using SrO and SrCO₃ given in Eq. (6). The DSC curve showed that heat flow at the high temperatures went down more rapidly from the maximum than that of SrO and SrCO₃, indicating that the rate of final solid-state reaction leading to the formation of Sr₅(PO₄)₂SiO₄ phosphor was relatively faster.

$$(NH_4)_2HPO_4 + Sr(NO_3)_2 \xrightarrow{room-temperature} SrHPO_4 + 2NH_4NO_3$$
 (9)

$$(NH_4)_2HPO_4 + Sr(NO_3)_2 \xrightarrow{\sim 260^{\circ}C} SrHPO_4 + 2N_2 + O_2 + 4H_2O$$
 (10)

$$Sr(NO_3)_2 \xrightarrow{\sim 300 - 400^{\circ}C} Sr(NO_2)_2 + O_2$$
 (11)

$$Sr(NO_2)_2 \xrightarrow{\sim 600 - 650^{\circ}C} SrO + NO + NO_2$$
 (12)

$$Sr_2SiO_4 + SrO + Sr_2P_2O_7 \xrightarrow{\sim 800-1300^{\circ}C} Sr_5(PO_4)_2SiO_4$$
 (13)

Fig. 2 shows XRD patterns of Sr_{4.94}(PO₄)₂SiO₄:Eu_{0.06} phosphors prepared using different sources of strontium. The patterns of the samples were in good agreement with JCPDS files No. 21–1187 of $Sr_5(PO_4)_2SiO_4$ [27]. Meanwhile, small diffraction peaks with two theta degree values at 27.3 and 31.3 corresponding to Sr₂SiO₄ (JCPDS 39-1256) were also observed. The presence of Sr₂SiO₄ for the phosphors prepared from different strontium sources and stoichiometric (NH₄)₂HPO₄ may be due to the slow rate of solid-state reaction and volatility of (NH₄)₂HPO₄ which make the amount of phosphorus species remaining in the mixture less than stoichiometry at the high temperatures. This also proved the reaction scheme proposed above that Sr₂SiO₄ was the intermediate phase during the formation of the phosphosilicate phosphor. The intensity of Sr₂SiO₄ impurity phase in the phosphor decreased with strontium sources in the order of SrO > SrCO₃ >

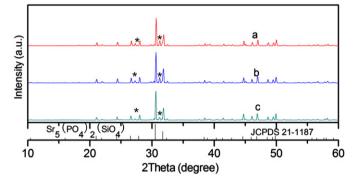


Fig. 2. XRD patterns of $Sr_{4.94}(PO_4)_2SiO_4$: $Eu_{0.06}$ prepared by solid-state reaction with different strontium sources (a) SrO; (b) SrCO₃ and (c) Sr(NO₃)₂. "*" denotes Sr_2SiO_4 impurity phase.

Sr(NO₃)₂. This is easily understood. Since compared with reagent SrO being directly added, the fresh SrO produced in-situ by decomposition of the nitrate or the carbonate during solid-state reaction had smaller particle size and higher reactivity [24]. Moreover, decomposition of Sr(NO₃)₂ took place at the temperature significantly lower than that of SrCO₃ and the rate of the final solid-state reaction was faster as observed in TG–DTG–DSC profiles. The phase purity of phosphor prepared was high correspondingly.

Fig. 3 shows SEM images of Sr_{4.94}(PO₄)₂SiO₄:Eu_{0.06} phosphors prepared by solid-state reaction with different strontium sources. It was found that particle irregularity, particle size and surface roughness of the phosphors prepared from different strontium sources were different. When SrO was used as the strontium source, dense coagulated quasispherical particles with a size about 5–10 µm were observed. When Sr(NO₃)₂ was used as the strontium source, the particles were egg-like or quasi-spherical with a mean size of ca 2–5 µm. In the case of SrCO₃, phosphor particles were in an irregular form with coarse surface and a size of ca 5 μm. The different particle size and morphology of the phosphors were related with not only the particle size of the strontium sources but the specific reaction and nucleation processes. As shown in the thermal analysis, the reaction scheme and weight loss percentage when using the unlike strontium sources were different, indicating that amount (or volume) of volatile species (gas and H₂O) generated and the temperature at which the volatile species was generated in solid-state reactions were different. The release of volatile species in solid-state reaction might form some gas pass-ways (or channels) which prohibited the agglomeration and

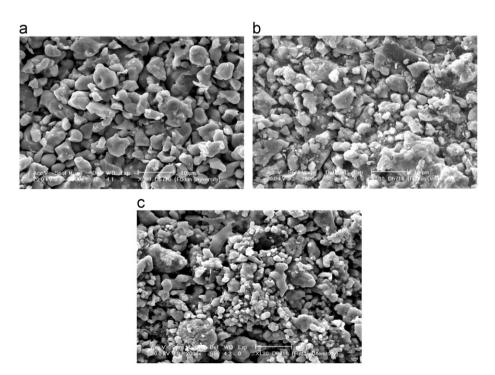


Fig. 3. SEM images of Sr_{4,94}(PO₄)₂SiO₄:Eu_{0.06} phosphors prepared with different strontium sources. (a) SrO; (b) SrCO₃ and (c)Sr(NO₃)₂.

aggregation of the particles, and consequently, led to the formation of dispersed particles with relatively smaller sizes.

Fig. 4 shows PLE and PL spectra of Sr_{4.94}(PO₄)₂₋ SiO₄:Eu_{0.06} phosphors prepared with different strontium source measured at room temperature. The PLE spectra showed a wide absorption band with wavelength ranging from 250 to 420 nm. Under the excitation of 346 nm the phosphors showed a green emission band peaking at wavelength ca 496 nm along with a shoulder at ca 550 nm. The broad excitation and emission band could be assigned to 4f-5d transitions of Eu²⁺ ions [25]. The asymmetric excitation and emission spectra indicated that there was more than one Eu²⁺ emission centers in the lattice. The crystal structure of Sr₅(PO₄)₂SiO₄ has been studied and elucidated in the literature [19,20,25,27]. Two sites are available in Sr₅(PO₄)₂SiO₄ apatite structure for activator cations, namely the site Sr1 on the 4f position (C₃ point symmetry) with 9-fold coordination and the site Sr2 at the 6 h (Cs symmetry) with 7-fold coordination. The bond length of Sr2-O is shorter than that of Sr1-O. According to site coordination and Eu²⁺ ligand distances of the two sites, the emission at 496 nm should be from Eu²⁺ at 9-fold coordination 4f sites, and the emission around 550 nm should be from the Eu²⁺ at 7-fold coordination 6 h sites which experienced stronger crystal field owing to shorter distance between Eu²⁺ and the nearest anions. The peak wavelength of the emission being slightly different from the literature value should be due to different Eu²⁺ doping concentrations, since the emission of Eu²⁺ in apatite is concentration dependent [20]. XRD results in Fig. 2 showed that trace of Sr₂SiO₄ impurity phase was also present in the phosphor. However, it is hard to separate the emission from Eu²⁺ in the silicate. Because the content of Sr₂SiO₄ phase was very low and the emission of Eu²⁺ in Sr₂SiO₄ was around 550 nm [8] which

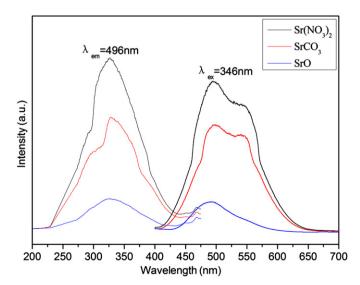


Fig. 4. PLE and PL spectra of $Sr_{4.94}(PO_4)_2SiO_4$: $Eu_{0.06}$ phosphors prepared with different strontium sources.

is overlapped with the emission of Eu²⁺ at 7-fold coordination 6h sites. Comparison of the PL spectra of the phosphors prepared from different strontium sources revealed that the emission intensity was positively correlated with the phase purity of the phosphosilicate apatite phosphor.

3.2. Effect of phosphorus sources

(NH₄)₂HPO₄ was commonly used as a phosphorus source when preparing phosphate and phosphosilicate phosphors [12,16,28]. In preparation of halophosphate phosphors alkaline earth monophosphate MHPO₄ was often used [29,30]. In this paper, SrHPO₄ and (NH₄)₂HPO₄ were employed as the phosphorus sources for comparison and using SrCO₃ as the strontium source. The reason for using SrCO₃ instead of more reactive Sr(NO₃)₂ as the strontium source here was for environmental consideration since nitric oxides would be generated during the heating of the mixture containing Sr(NO₃)₂. To compensate for the evaporation of (NH₄)₂HPO₄ species in high-temperature solid-state reactions, excess (NH₄)₂HPO₄ was added. We expected to explore whether it is possible to improve the phase purity of apatite by adding excess (NH₄)₂HPO₄. The reactivity and reaction scheme of the intimate mixture with a formula of Sr_{4.94}(PO₄)₂SiO₄:Eu_{0.06} using stoichiometric SrHPO₄ or (NH₄)₂HPO₄ as the phosphorus source was studied by TA. In Fig. 5 TG-DTG-DSC profiles of the mixture using SrHPO₄ as the phosphorus source are shown. The TG-DTG-DSC profiles of the stoichiometric mixture using (NH₄)₂HPO₄ as the phosphorus source were same as the case discussed in the previous section about SrCO3.

It was seen from Fig. 5 that weight loss steps occurred at 310-350 (about 3%) and 800-1000 °C (about 10%). The weight loss at 800-1000 °C proceeded in two-step. Based on the thermodynamics of SrHPO₄ and SrCO₃ and the

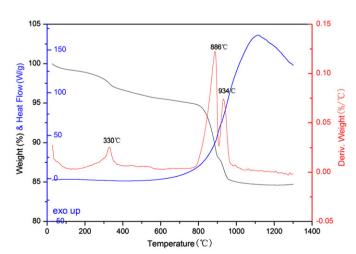


Fig. 5. TG-DTG-DSC profiles of stoichiometric mixture of raw materials using SrHPO₄ as the phosphorus source.

TG-DTG-DSC curves, the main reactions taking place during the heating of the mixture using SrHPO₄ as the phosphorus source were proposed as follows:

The weight loss step at temperature range 310–350 °C should be ascribed to the dehydration of SrHPO₄ to form Sr₂P₂O₇ as shown in Eq. (3). The temperature of SrHPO₄ dehydration was similar to the corresponding values of SrCO₃ in Fig. 1, indicating that SrHPO₄ directly added might be in the same modification with that generated in-situ by solid-state reactions of H₃PO₄ with SrCO₃. According to the literature, SrHPO₄ has alpha and beta modifications [26]. The two weight loss steps at 800-1000 °C should be due to the decarbonation of SrCO₃ as given in Eq. (8) and the reaction of Sr₂P₂O₇ with SrCO₃ as given in Eq. (14). The generated SrO by decarbonation of SrCO₃ then reacted with SiO₂ to form Sr₂SiO₄ which further reacted with Sr₃(PO₄)₂ resulting in the formation of Sr₅(PO₄)₂SiO₄ phosphor as shown in Eq. (15). The DSC profile indicated that in contrast with the flat peak between 1000 and 1300 °C when using (NH₄)₂HPO₄ phosphorus source in Fig. 1, a tower-shape DSC profile appeared for the mixture using SrHPO₄, indicating that the rate of the final exothermic solid-state reactions was faster than that of any samples in Fig. 1.

$$Sr_2P_2O_7 + SrCO_3 \xrightarrow{\sim 800-900 \text{ }^{\circ}C} Sr_3(PO_4)_2 + CO_2$$
 (14)

$$\operatorname{Sr}_2\operatorname{SiO}_4 + \operatorname{Sr}_3(\operatorname{PO})_2 \xrightarrow{\sim 900 - 1300 \, {}^{\circ}\mathrm{C}} \operatorname{Sr}_5(\operatorname{PO}_4)_2\operatorname{SiO}_4$$
 (15)

Fig. 6 shows XRD patterns of the $Sr_{4.94}(PO_4)_2$ - SiO_4 : $Eu_{0.06}$ phosphors prepared from different source of phosphorus. The patterns showed that phosphors were composed of $Sr_5(PO_4)_2SiO_4$ apatite phase (JCPDS 21–1187) and trace amount of impurity Sr_2SiO_4 . When $(NH_4)_2HPO_4$ was used as the phosphorus source, the intensity of the Sr_2SiO_4 impurity phase decreased obviously with the addition of excess $(NH_4)_2HPO_4$ in the mixture. When 5% excess of $(NH_4)_2HPO_4$ was added, the silicate impurity phase was not detected. On the other hand, the Sr_2SiO_4 impurity phase was hardly detected when $SrHPO_4$ was used in a stoichiometric ratio. This may be related with not only the lower volatility of $SrHPO_4$ than $(NH_4)_2HPO_4$ but also the different reaction schemes as discussed in the thermal analysis section.

Fig. 7 shows SEM images of the Sr_{4.94}(PO₄)₂SiO₄:Eu_{0.06} phosphors prepared by solid-state reaction from different source of phosphorus. It was found that the morphology and particle size of the phosphor prepared with a stoichiometric SrHPO₄ were similar to that using a stoichiometric (NH₄)₂HPO₄, both in a coarse irregular form with a size of ca 5–10 µm. When (NH₄)₂HPO₄ was used with 3% excess, the surface smoothness of the phosphor were improved obviously, but the average particle size was decreased. When (NH₄)₂HPO₄ was used with 5% excess, aggregation of phosphor particles occurred, and mean particle size was increased slightly.

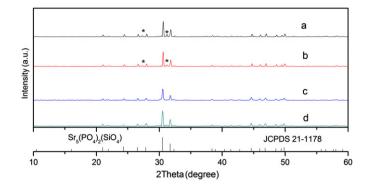


Fig. 6. XRD patterns of $Sr_{4.94}(PO_4)_2SiO_4$: $Eu_{0.06}$ phosphors prepared using $(NH_4)_2HPO_4$ and $SrHPO_4$ as the phosphorus source. (a) $(NH_4)_2HPO_4$ in stoichiometric ratio; (b) $(NH_4)_2HPO_4$ with 3% excess; (c) $(NH_4)_2HPO_4$ with 5% excess and (d) $SrHPO_4$ in stoichiometric ratio. "*" denotes Sr_2SiO_4 impurity phase.

Fig. 8 shows PLE and PL spectra of the Sr_{4.94}(PO₄)₂₋ SiO₄:Eu_{0.06} phosphors prepared by solid-state reaction with SrHPO₄ and (NH₄)₂HPO₄ as the source of phosphorus, respectively. It was found that the source of phosphorus had little influence on the spectral shape of PLE and PL, but the intensities of the excitation and emission changed significantly. When (NH₄)₂HPO₄ was used as the phosphorus source, the emission intensity at ca 496 nm increased obviously with addition of 3% excess (NH₄)₂HPO₄, further increasing (NH₄)₂HPO₄ content to 5% excess resulted in only slight improvement in emission intensity at 496 nm. The intensity of emission around 550 nm increased steadily with the content of (NH₄)₂HPO₄ in the mixture in the cases studied. When SrHPO4 was used as the phosphorus source in a stoichiometric ratio, the PL emission intensity of the phosphor was higher than that prepared from (NH₄)₂HPO₄ phosphorus source. The enhanced emission intensity of the phosphors with a stoichiometric SrHPO₄ or with excess of (NH₄)₂HPO₄ may be attributed mainly to the improved phase purity of the phosphors as observed in Fig. 6. On the other hand, the particle size and morphology of the phosphors may influence the reflection and absorption ratio of incident excitation radiation, which consequently affected the PL and PLE intensity of the phosphor. This should be the reason that the phosphor prepared with SrHPO₄ showed higher emission intensity than that prepared with excessive (NH₄)₂HPO₄ that had the same phase purity.

4. Summary

Sr_{4.94}(PO₄)₂SiO₄:Eu_{0.06} phosphor was prepared by high temperature solid-state reaction. Effects of strontium and phosphorus sources on the reactivity of their mixture and on phase composition, morphology and PL and PLE of the phosphors were investigated. For the strontium source, SrO generated in-situ by decomposition of nitrate or carbonate during solid-state reactions showed higher reactivity than that

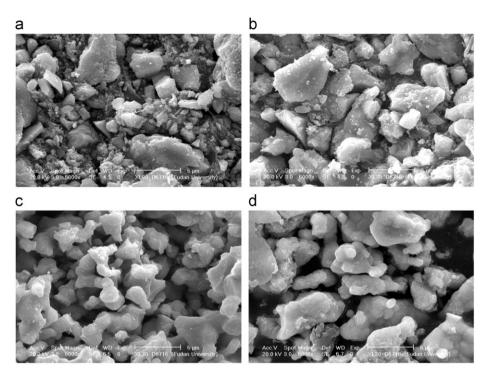


Fig. 7. SEM images of $Sr_{4,94}(PO_4)_2SiO_4$: $Eu_{0.06}$ phosphors prepared with different phosphorus sources. (a) $SrHPO_4$ in stoichiometric ratio; (b) $(NH_4)_2HPO_4$ in stoichiometric ratio; (c) $(NH_4)_2HPO_4$ with 3% excess and (d) $(NH_4)_2HPO_4$ with 5% excess.

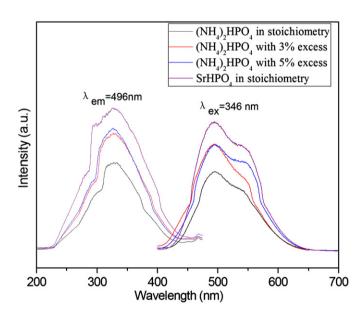


Fig. 8. PLE and PL spectra of $Sr_{4.94}(PO_4)_2SiO_4$: $Eu_{0.06}$ phosphors prepared using stoichiometric $SrHPO_4$ and different amounts of $(NH_4)_2HPO_4$ as the phosphorus source, respectively.

of reagent SrO directly added, the phase purity of the apatite phosphors prepared from the strontium salts was better than that using SrO. The phosphors prepared from the strontium salts also exhibited smaller particle size and less aggregation and hence higher PLE and PL intensity than that using SrO. Due to both the volatility of (NH₄)₂HPO₄ and low reactivity of SiO₂ it was hard to prepare pure phase phosphosilicate phosphor with a

stoichiometric $(NH_4)_2HPO_4$ as the phosphorus source. Minor Sr_2SiO_4 impurity phase was detected in the phosphors. The phase purity of the phosphor was improved with the addition of excess $(NH_4)_2HPO_4$. When $(NH_4)_2HPO_4$ with 5% excess was used as the phosphorus source, the impurity phase was not detected. On the other hand, when stoichiometric $SrHPO_4$ was used as the phosphorus source, the pure phase phosphosilicate phosphor was obtained. The phosphor showed higher PL and PLE intensity than that prepared from $(NH_4)_2HPO_4$ phosphorus source.

References

- [1] S. Nakamura, S. Pearton, G. Fasol, The Blue Laser Diode, second updated and extended ed., Springer, Berlin, 1996, p. 230.
- [2] R.-J. Xie, Y.Q. Li, N. Hirosaki, H. Yamamoto, Nitride Phosphors and Solid-State Lighting, CRC Press, New York, 2011.
- [3] A.A. Setlur, H.A. Comanzo, A.M. Srivastava, Spectroscopic evaluation of a white light phosphor for UV–LEDs-Ca₂NaMg₂V₃O₁₂:Eu³⁺, Journal of the Electrochemical Society 152 (2005) H205–H208.
- [4] W.J. Yang, L. Luo, T.M. Chen, N.S. Wang, Luminescence and energy transfer of Eu–Mn-coactivated CaAl₂Si₂O₈ as a potential phosphor for white-light UV–LED, Chemistry of Materials 17 (2005) 3883–3888.
- [5] S. Ye, Z.S. Liu, X.T. Wang, J.G. Wang, L.X. Wang, X.P. Jing, Emission properties of Eu²⁺, Mn²⁺ in MAl₂Si₂O₈ (M=Sr, Ba), Journal of Luminescence 129 (2009) 50–54.
- [6] J.S. Kim, P.Y. Jeon, J.C. Choi, H.L. Park, S.I. Mho, G.C. Kim, Warm-white-light emitting diode utilizing a single-phase full-color Ba₃MgSi₂O₈:Eu²⁺, Mn²⁺ phosphor, Applied Physics Letters 84 (2004) 2931–2933.
- [7] Y. Umetsu, S. Okamoto, H. Yamamoto, Photoluminescence properties of $Ba_3MgSi_2O_8:Eu^{2+}$ phosphor and $Ba_3MgSi_2O_8:Eu^{2+}$, Mn^{2+}

- blue-red phosphor under near-ultraviolet-light excitation, Journal of the Electrochemical Society 155 (2008) J193-J197.
- [8] S.H. Lee, H.Y. Koo, Y.C. Kang, Characteristics of α'- and β-Sr₂SiO₄:Eu²⁺ phosphor powders prepared by spray pyrolysis, Ceramics International 36 (2010) 1233–1238.
- [9] L. Chen, C.C. Lin, C.W. Yeh, R.S. Liu, Rare-earth activated nitride phosphors: synthesis, luminescence and applications, Materials 3 (2010) 2172–2195.
- [10] C.C. Lin, R.-S. Liu, Advances in phosphors for light-emitting diodes, Journal of Physical Chemistry Letters 2 (2011) 1268–1277.
- [11] H.A. Hoppe, M. Daub, M.C. Brohmer, Coactivation of α -Sr(PO₃)₂ and SrM(P₂O₇) (M=Zn, Sr) with Eu²⁺ and Mn², Chemistry of Materials 19 (2007) 6358–6362.
- [12] Z. Wua, J. Liu, M. Gong, Thermally stable luminescence of SrMg₂(PO₄)₂: Eu²⁺ phosphor for white light NUV light-emitting diodes, Chemical Physics Letters 466 (2008) 88–90.
- [13] N. Guo, Y. Zheng, Y. Jia, H. Qiao, H. You, Warm-white-emitting from Eu²⁺/Mn²⁺-codoped Sr₃Lu(PO₄)₃, Journal of Physical Chemistry C 116 (2012) 1329–1334.
- [14] C. Zhao, X. Yin, Y. Wang, F. Huang, Y. Hang, Photoluminescence properties of Ca₉Lu(PO₄)₇:Ce³⁺, Mn²⁺ prepared by conventional solid-state reaction, Journal of Luminescence 132 (2012) 617–621.
- [15] C.C. Lin, Z.R. Xiao, G.Y. Guo, T.S. Chan, R.S. Liu, Versatile phosphate phosphors ABPO₄ in white light-emitting diodes: collocated characteristic analysis and theoretical calculations, Journal of the American Chemical Society 132 (2010) 3020–3028.
- [16] C.F. Guo, L. Luan, X. Ding, D.X. Huang, Luminescent properties of SrMg₂(PO₄)₂: Eu²⁺, and Mn²⁺ as a potential phosphor for ultraviolet light-emitting diodes, Applied Physics A 91 (2008) 327–331.
- [17] S.R. Yan, X.F. Hu, H.H. Fei, J.G. Hu, G.J. Wan, L. Ma, Preparation and properties of Eu²⁺-activated alkaline-earth phosphosilicate phosphors, Solid State Communications 148 (2008) 186–189.
- [18] H.S. Roh, S. Hur, H.J. Song, I.J. Park, D.K. Yim, D.W. Kim, K.S. Hong, Luminescence properties of Ca₅(PO₄)₂SiO₄:Eu²⁺ green phosphor for near UV-based white LED, Materials Letters 70 (2012) 37–39.
- [19] J.H. Gan, Y.L. Huang, L. Shi, X.B. Qiao, H.J. Seo, Luminescence properties of Eu²⁺-activated Sr₅(PO₄)₂(SiO₄) for green-emitting phosphor, Materials Letters 63 (2009) 2160–2162.

- [20] X.G. Wang, J.H. Gan, Y.L. Huang, H.J. Seo, The doping concentration dependent tunable yellow luminescence of Sr₅(PO₄)₂ (SiO₄):Eu, Ceramics International 38 (2012) 701–706.
- [21] Y. Huang, J. Gan, R. Zhu, X. Wang, H.J. Seo, Structural phase formation and tunable luminescence of Eu²⁺-activated apatite-type (Ca,Sr,Ba)₅(PO₄)₂(SiO₄), Journal of the Electrochemical Society 158 (2011) J334–J340.
- [22] J. Yu, W. Gong, Z. Xiao, G. Ning, Spectral structure of barium, phosphate, silicate phosphor Ba₁₀(PO₄)₄(SiO₄)₂:Eu, M⁺, Journal of Luminescence 132 (2012) 2957–2960.
- [23] P.F. Smet, A.B. Parmentier, D. Poelman, Selecting conversion phosphors for white light-emitting diodes, Journal of the Electrochemical Society 158 (2011) R37–R54.
- [24] R.C. Ropp, Luminescence and the solid state, second ed., Elsevier, Amsterdam, 2004, p. 121.
- [25] G. Blasse, A. Bril, Energy transfer between Eu²⁺ ions in non-equivalent sites in strontium-silicate-phosphate, Physics Letters A 28 (1969) 572-573.
- [26] R.W. Mooney, M.A. Aia, Chemical Reviews 61 (1961) 433-462.
- [27] V.H. Schwarz, Strontiumapatite des Typs Sr₁₀(PO₄)₄(X^{IV}O₄)₂ (X^{IV}=Si, Ge), Zeitschrift für anorganische und allgemeine Chemie 357 (1968) 43–53.
- [28] J. Wang, S. Wang, Q. Su, Synthesis, photoluminescence and thermo stimulated -luminescence properties of novel red long-lasting phosphorescent materials β -Zn₃(PO₄)₂:Mn²⁺, M³⁺(M=Al and Ga), Journal of Materials Chemistry 14 (2004) 2569–2574.
- [29] M. Kottaisamy, M. Mohan Rao, D. Jeyakumar, Divalent europium-activated alkaline-earth-metal chlorophosphate luminophores [M₅(PO₄)₃Cl:Eu²⁺; M=Ca, Sr, Ba] by self-propagating high-temperature synthesis, Journal of Materials Chemistry 7 (1997) 345–349.
- [30] M.H. Hwang, E.Y. Lee, S.-H. Hong, Y.-B. Sun, Y.J. Kim, Preparation and luminescent properties of Ca₅(PO₄)₃Cl:Eu²⁺ phosphors by a solid-state reaction method, Journal of the Electrochemical Society 156 (2009) J185–J188.