



#### Available online at www.sciencedirect.com

# SciVerse ScienceDirect

**CERAMICS**INTERNATIONAL

www.elsevier.com/locate/ceramint

Ceramics International 39 (2013) 8363-8376

# Influence of different additives on the synthesis of VO<sub>2</sub> polymorphs

Yifu Zhang<sup>a</sup>, Juecheng Zhang<sup>a,b</sup>, Xiongzhi Zhang<sup>a</sup>, Yuan Deng<sup>a</sup>, Yalan Zhong<sup>a</sup>, Chi Huang<sup>a,c,\*</sup>, Xin Liu<sup>b</sup>, Xinghai Liu<sup>d</sup>, Shaobo Mo<sup>a,\*\*</sup>

<sup>a</sup>College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China

<sup>b</sup>School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China

<sup>c</sup>Engineering Research Center of Organosilicon Compound and Material, Ministry of Education of China, Wuhan 430072, PR China

<sup>d</sup>School of Printing and Packaging, Wuhan University, Wuhan 430072, PR China

Received 29 January 2013; received in revised form 6 April 2013; accepted 6 April 2013 Available online 12 April 2013

#### Abstract

Monoclinic vanadium dioxide VO<sub>2</sub>(M) shows a fully reversible first-order metal-to-insulator transition (MIT) with the phase transition temperature ( $T_c$ ) at about 68 °C. The large-scale and low-cost synthesis of VO<sub>2</sub>(M) are a challenge for materials scientists. In this paper, the influence of different additives on the synthesis of VO<sub>2</sub> polymorphs by a hydrothermal route was studied. F, Ti, Cr, Fe, Mo, Sn, Sb and W atoms can promote the formation of VO<sub>2</sub>(M), while Mg, Al, Co and Ni atoms are favorable for the synthesis of VO<sub>2</sub>(B), whereas, Na, Ca, Mn and Zn atoms have no influence on the formation of VO<sub>2</sub>(A). It was found that the  $T_c$  of doped VO<sub>2</sub>(M) is very sensitive to the doped atoms. Some parameters, such as the temperature, reaction time, initial V<sub>2</sub>O<sub>5</sub>/oxalic acid molar ratio, tungstic acid concentration, were briefly discussed to give a systematic overview on the synthesis of W-doped VO<sub>2</sub>(M). In all cases, the morphologies of the doped VO<sub>2</sub>(M) show micro- and nano-rods structures. The  $T_c$  of W-doped VO<sub>2</sub>(M) can be simply tuned by changing the doping concentration of W atom within appropriate limits. The variable-temperature infrared spectra show that the doped VO<sub>2</sub>(M) has outstanding thermochromic characters and optical switching properties. Furthermore, the enlarged-scale experiments for the synthesis of doped VO<sub>2</sub>(M) suggest that the same results can be acquired, which makes this route very suitable for practical application.

© 2013 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: A. Powders: chemical preparation; C. Optical properties; D. Transition metal oxides; D. Vanadium oxides; VO<sub>2</sub>(M)

### 1. Introduction

Low-dimensional materials, including those of zero-dimension, one-dimension (1D), and two-dimensions, have been in the forefront of applied research because they exhibit novel physical and chemical properties, which greatly differ from their bulk counterparts [1–4]. Among them, 1D nanostructures, such as nanotubes, nanobelts, nanorods, and nanowires, are a particularly attractive class of materials because they exhibit lots of novel characteristics owing to their small radial dimen; sion while retaining wire-like connectivity [5]. Moreover, 1D nanostructures have been stimulating significant interest in material chemistry

due to their novel chemical and physical properties, which make them have a wide range of potential applications [6–8], including the fabrication of nanoscale electronic, optical, electrochemical, optoelectronic, electromechanical devices, etc. Owing to their special morphology, they can be also used as templates to synthesize some extraordinary materials which can hardly be fabricated by a direct route [3,9–11]. For example,  $V_2O_3@C$  core-shell structured nanocomposites can be synthesized using  $V_3O_7 \cdot H_2O@C$  nanobelts as templates and the as-obtained  $V_2O_3@C$  can improve the electrochemical properties of  $V_2O_3$  [3]. Therefore, it is of great interest for materials scientists to fabricate materials with novel structures and morphologies, which may have outstanding properties and applications.

As is well known, vanadium has abundant oxidation states (0-+5), which is usually composed of a variety of binary oxides with the general formula  $VO_{2+x}$  ( $-0.5 \le x \le 0.5$ ), such as  $V_2O_5$ ,  $V_3O_7$ ,  $V_4O_9$ ,  $V_6O_{13}$ ,  $VO_2$ ,  $V_2O_3$ , etc. Over the past decades, numerous efforts have been employed in vanadium

<sup>\*</sup>Corresponding author at: College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China. Tel.: +86 68754224; fax: +86 27 68754067.

<sup>\*\*\*</sup>Corresponding author. Tel.: +86 68754224; fax: +86 27 68754067. *E-mail addresses:* chihuang@whu.edu.cn, zhyifu123@126.com (C. Huang), sbmo@whu.edu.cn (S. Mo).

oxides and their derivatives as functional materials because of their layered structures, novel chemical and physical properties [12-23], which make them possess a wide range of promising potential applications, such as cathode materials for reversible lithium batteries, catalysts, gas sensors, intelligent thermochromic windows, laser shield and so on. As a family of vanadium oxides, VO2 is a representative binary com pound with different polymorphs, including VO<sub>2</sub>(B), VO<sub>2</sub>(M),  $VO_2(R)$ ,  $VO_2(A)$ ,  $VO_2(C)$  [24], recently reported  $VO_2(D)$  [25], etc. VO<sub>2</sub>(B) with metastable monoclinic structure has attracted interest as a promising cathode material for Li-ion battery, on the basis of not only its proper electrode potential, but also its tunnel structure, through which Li-ions can make intercalation and de-intercalation in reversible Li-ion battery [26]. Besides, VO<sub>2</sub>(B) is usually as the precursor to be transformed to VO<sub>2</sub>(M/R) [27]. Recently, increasing attention has been paid on tetragonal VO<sub>2</sub>(A) (space group: P42/ncm) [28–31], because it shows a metal-semiconductor transition with the phase transition temperature ( $T_c$ ) at 162 °C, accompanied by a crystallographic transition between a low temperature phase (LTP, P4/ncc, 130 below 162 °C) and a high temperature phase (HTP, I4/m, 87 above 162 °C).

However, among all of VO<sub>2</sub>, VO<sub>2</sub>(M) is the most important because it shows a fully reversible first-order metal-to-insulator transition (MIT) at a temperature of  $T_c = -68$  °C [32], which is very close to room temperature. VO<sub>2</sub>(M), an insulator and IR transparent, monoclinic phase above  $T_c$  changes to  $VO_2(R)$ , a metallic and highly IR reflective, rutile phase [33]. For example, the change in electrical resistivity is in the order of  $10^5$  below and above  $T_c$ . Moreover, the  $T_c$  of  $VO_2(M)$  can be tuned by doping with W, Mo, Nb, F atoms, etc. or their mixtures [14,34-39]. These features make them have promising applications in smart window coatings for energy-saving and comfort, optical switching devices, Mott field-effect transistors, uncooled IR imaging, laser protection, data storage and so on [14,40–43]. Among of their potential applications, the most important one is "smart window coatings". The VO<sub>2</sub> material exhibits IR transmission at  $T < T_c$ , where T is the ambient temperature. However, it becomes IR reflection at  $T > T_c$ . The above descriptions make it to be required for smart windows. In winter, VO<sub>2</sub> smart window coatings allow infrared solar transmittance and keep the indoor warm. Whereas, in summer, they block infrared solar transmittance and make the indoor cool. If we can make use of VO<sub>2</sub> for the smart windows and in automobiles, electricity consumption can be lowered by 30%, as well as other fuels conserved, because about 50% of the total solar energy is distributed to the infrared spectral range [44–47]. Therefore, VO<sub>2</sub> smart window coatings have been practiced by some researchers [48]. VO<sub>2</sub>-based films with high thermochromic quality were deposited by PVD methods in laboratory. However, there are some barriers which restrict the production of these films in low-cost and largescale. To solve the problem, the route for the synthesis of VO<sub>2</sub>/polymer composite films has been proposed. Nowadays, polymer science has been greatly developed. Up to now, highly transparent and durable films are commercially available and a variety of functional fillers have been widely used. While

the  $VO_2$  powder is considered as a kind of filler, it can be asserted that all other technical problems have been solved except the availability of high quality filler [42,49,50]. Therefore, the fabrication of low-cost and large-scale  $VO_2(M)$  powders is crucial for materials scientists.

So far, various technologies have been developed for producing  $VO_2(M)$  powders. These methods generally can be cataloged to reduction of high-valance vanadium oxides [51, 52], pyrolysis of vanadium containing precursor [53,54], soft-chemical route [55,56], transforming from  $VO_2(B)$  [35,57] or  $VO_2(A)$  [43] to  $VO_2(M)$  at elevated temperatures, direct confined-space combustion [58], sol-gel synthesis [42] and hydrothermal synthesis [36,37,59–64]. However, most of them are much complex, low efficiency and high cost. Besides, their experimental conditions are very harsh and energy-consuming. Thus, they are not suitable for coating the surface of substrates with a large surface area and industrial applications. On the contrary, in recent years, the hydrothermal synthesis has been paid increasing attention owing to its simple route, low cost, large-scale and mass production.

In 1977, Théobald [62] first reported the synthesis of VO<sub>2</sub> (M) above 350 °C by the hydrothermal reaction in V<sub>2</sub>O<sub>3</sub>-V<sub>2</sub>O<sub>5</sub>-H<sub>2</sub>O system. Thereafter, there has been few literatures reported on the hydrothermal synthesis of VO<sub>2</sub>(M), suggesting the difficulty in obtaining VO<sub>2</sub>(M) at low temperature by one step reaction. Up to 2001, Gui et al. [63] mentioned the formation of VO<sub>2</sub>(R) by a long-time hydrothermal reduction of NH<sub>4</sub>VO<sub>3</sub> by N<sub>2</sub>H<sub>4</sub> (at 220 °C for 15 days). But no details about the formed VO<sub>2</sub>(R) were given in their paper. Recently, VO<sub>2</sub> (R) hollow spheres with nanorods aggregating on their surface were successfully synthesized by a surfactant-assisted hydrothermal process [61]. Son and his coworkers [59] reported the synthesis of micro- and nano-crystals of VO<sub>2</sub>(M) by a hydrothermal method including three steps: (1) V<sup>4+</sup> solution was obtained by the reaction of V<sub>2</sub>O<sub>5</sub>, H<sub>2</sub>SO<sub>4</sub>, and N<sub>2</sub>H<sub>4</sub>·H<sub>2</sub>O; (2) a gray to brown precipitate is formed by adjusting the pH values using NaOH solution; and (3) the above precipitate undergoes hydrothermal treatment at 230 °C for 48 h. Ji et al. [60] directly synthesized VO<sub>2</sub>(R) nanorods via the hydrothermal reduction of V<sub>2</sub>O<sub>5</sub> by oxalic acid. However, Cao et al. [37], Luisa Whittaker et al. [36] and our groups [29] found that only VO<sub>2</sub>(A) can be obtained by the hydrothermal reaction of V<sub>2</sub>O<sub>5</sub> and oxalic acid. Cao et al. [37] and Whittaker et al. [36] published that W-doped VO<sub>2</sub>(M) snowflakes consisting of nanorods and nanobelts had been synthesized via the hydrothermal reaction of V<sub>2</sub>O<sub>5</sub>, oxalic acid, and tungstic acid at 240 °C for 7 days and at 250 °C for 48 h, respectively. Our group recently reported the W-doped VO<sub>2</sub>(M) nanobelts synthesized using peroxovanadium (V) complexes as the vana dium precursor and ethanol as the reducing agent by a facile one-step hydrothermal approach [65]. However, the influence of different additives on the formation of VO<sub>2</sub> poly;morphs (VO<sub>2</sub>(M), VO<sub>2</sub>(A) and VO<sub>2</sub>(B)) during hydrothermal reaction has not been studied until now, which can guide the large-scale preparation of VO<sub>2</sub>(M) for the industrial production.

Herein, we first reported a systematic overview on the synthesis of W-doped VO<sub>2</sub>(M) using tungstic acid as the

additive during a hydrothermal approach. Then, the influence of different additives on the formation of  $VO_2$  polymorphs by this hydrothermal route was investigated. Last, the enlarged-scale experiments for the synthesis of doped  $VO_2(M)$  were carried out.

#### 2. Experimental section

# 2.1. Synthesis of W-doped VO<sub>2</sub>

All reagents used in the experiments were of analytical grade and used without any further purification. In a typical synthesis, 0.91 g of vanadium pentoxide ( $V_2O_5$ ), 1.26 g of  $H_2C_2O_4 \cdot 2H_2O$  (oxalic acid dihydrate) and appropriate amount of tungstic acid  $[n(W)/n(V+W)*100\%=0,\ 0.25\%,\ 0.5\%,\ 0.75\%,\ 1.0\%,\ 1.25\%,\ 1.5\%,\ 2.0\%,\ 3.0\%,\ 4.0\%$  or higher] were dispersed into 40 mL of deionized water with magnetic stirring vigorously for about 10 min at room temperature. After the solution became suspension, the mixed solution was transferred into a 60 mL stainless steel autoclave, which was sealed and maintained at 180–280 °C for 1–96 h and then cooled to room temperature naturally. The products were filtered off, washed with distilled water and absolute ethanol several times to remove any possible residue, and dried in vacuum at 75 °C.

# 2.2. Synthesis of VO<sub>2</sub> doped with different additives

The synthetic process was the same as Section 2.1, except that the HF, NH $_4$ F, NaOH, MgO, Al $_2$ O $_3$ , Al(OH) $_3$ , Ca(OH) $_2$ , TiO $_2$ , Cr(OH) $_3$ , MnO $_2$ , Fe $_2$ O $_3$ , Fe(OH) $_3$ , Co $_3$ O $_4$ , Ni(OH) $_2$ , ZnO, molybdenic acid, ammonium molybdate, sodium molybdate, SnO, Sb $_2$ O $_3$ , ammonium tungstate or sodium tungstate took the place of tungstic acid.

# 2.3. Enlarged-scale experiments for the preparation of doped $VO_2(M)$

The synthetic process was similar with Section 2.1, except that the quantities of the starting materials were amplified to 20 times in these experiments, which were carried out by a 1.2 L stainless steel autoclave.

### 2.4. Characterization

The crystalline phases of the as-prepared samples were characterized by X-ray powder diffraction (XRD), preformed on D8 X-ray diffractometer equipment with Cu  $K\alpha$  radiation,  $\lambda$ =1.54060 Å. The patterns were recorded over the angular range 8–80° (2 $\theta$ ) with a scan speed of 4°/min. The narrow XRD patterns were collected with 2 $\theta$  ranging from 26° to 29° with a scan speed of 0.2 deg/min. The chemical composition of the samples was confirmed by the means of the energy dispersive X-ray spectrometer (EDS) attached to a scanning electron microscope (SEM, Quanta 200), X-ray photoelectron spectroscopy (XPS, KRATOS, XSAM800 with MgK $\alpha$  1253.

6 eV 16 mA  $\times$  12 kV) and X-ray fluorescence (XRF, XRF-1800, Shimadzu, Japan). The morphology of the products was observed by SEM (Quanta 200) operated at 30 kV. The phase transition temperature ( $T_c$ ) of the samples was measured by differential scanning calorimetry (DSC, DSC822°, METTLER TOLEDO) in a heating rate at 5 °C/min with a liquid nitrogen cooling system. Optical properties of the samples were tested by variable-temperature Fourier transform infrared spectroscopy (FT-IR, NICOLET 5700) with an adapted heating controlled cell. FT-IR patterns of the solid samples were measured using KBr pellet technique from 4000 to 400 cm<sup>-1</sup> with a resolution of 4 cm<sup>-1</sup>. About 1 wt% of the samples and 99 wt% of KBr were mixed homogeneously, and then the mixture was pressed to a pellet.

#### 3. Results and discussion

#### 3.1. Characterization of W-doped VO<sub>2</sub>(M)

# 3.1.1. XRD diffraction patterns

In this section, unless otherwise stated, the following experiments were carried out using tungstic acid as the additive. Fig. 1 shows the XRD patterns of W-doped VO<sub>2</sub> prepared at different temperatures for 48 h using 0.91 g of V<sub>2</sub>O<sub>5</sub>, 1.26 g of H<sub>2</sub>C<sub>2</sub>O<sub>4</sub> · 2H<sub>2</sub>O and 1.0 at% of tungstic acid. The products obtained at 180 and 210 °C can be indexed to the metastable VO<sub>2</sub>(B) polymorph (JCPDS, no. 31-1438) [66], which has attracted increasing interest as a cathode material for Li-ion batteries. Upon increasing the temperature of the hydrothermal reaction to 230 °C, the isolated products appear to be a mix of the original VO<sub>2</sub>(B) along with a significant proportion of the monoclinic VO<sub>2</sub>(M) polymorph (JCPDS, no. 43-1051) [67], as depicted in Fig. 1c. However, VO<sub>2</sub>(M) was obtained when the reaction temperature was above 280 °C. The as-obtained

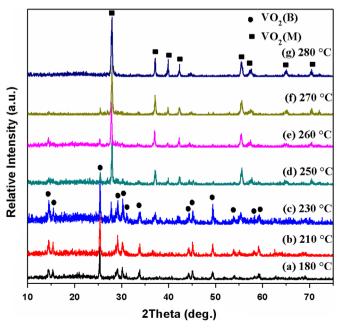



Fig. 1. XRD patterns of W-doped VO<sub>2</sub> prepared at different temperatures.

 $VO_2(M)$  is phase pure and exclusively monoclinic in crystal structure within the detection limits of powder XRD. Therefore, the transformation of crystal phases from  $VO_2(B)$  to  $VO_2(M)$  in our hydrothermal system takes place between 230 and 280 °C, which is much lower than the reference's value [62]. This phenomenon reveals  $VO_2(M)$  can be formed at a comparatively low temperature in the presence of  $H_2WO_4$ , which greatly reduces the cost and technique of its industrial production.

Fig. 2 represents the XRD patterns of W-doped VO<sub>2</sub> synthesized by the hydrothermal treatment at 280 °C for different reaction times (0.91 g of V<sub>2</sub>O<sub>5</sub>, 1.26 g of H<sub>2</sub>C<sub>2</sub>O<sub>4</sub> · 2H<sub>2</sub>O and 1.0 at% of tungstic acid). The diffraction patterns in this panel illustrate that after shorter reaction times, such as 1, 3 and 6 h, a residual amount of metastable VO<sub>2</sub>(B) remains in the isolated products. Upon further increasing the reaction time to 12 h or longer, the products appear to be exclusively phase-pure VO<sub>2</sub>(M), suggesting that the metastable VO<sub>2</sub>(B) phase is an inter mediate for the synthesis of VO<sub>2</sub>(M) structures. It can be observed from Fig. 2, that the transformation from VO<sub>2</sub>(B) to VO<sub>2</sub>(M) is very short compared with the previous [36,37].

The initial  $V_2O_5$ /oxalic acid molar ratio plays a significant role in synthesizing high purity W-doped  $VO_2(M)$ . Fig. 3 shows the XRD patterns of the products synthesized with different  $V_2O_5$ /oxalic acid molar ratios (0.91 g of  $V_2O_5$ , 1.0% of tungstic acid and at 280 °C for 48 h). As depicted in Fig. 3, the preparation of phase-pure  $VO_2(M)$  is achieved only within a limited molar ratio window ( $V_2O_5$ /oxalic acid=1/2-1/3), whereas various mixed  $VO_x$  phases are observed below and above this optimum range of molar ratio. In this context, binary vanadium oxides are known to have an incredibly rich phase diagram because of the diversity of vanadium oxidation states (0-+5), local coordination environments (square pyramidal, tetrahedral, octahedral, and trigonal bipyramidal), and

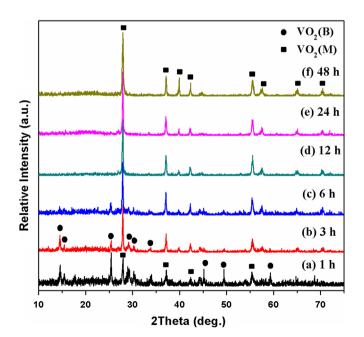



Fig. 2. XRD patterns of W-doped  $\rm VO_2$  synthesized at 280  $^{\circ} \rm C$  for different periods of reaction time.

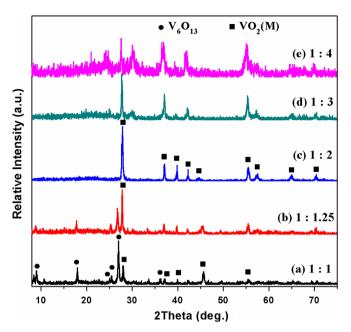



Fig. 3. XRD patterns of the products synthesized with different mol ratios of  $V_2O_5/H_2C_2O_4 \cdot 2H_2O$ .

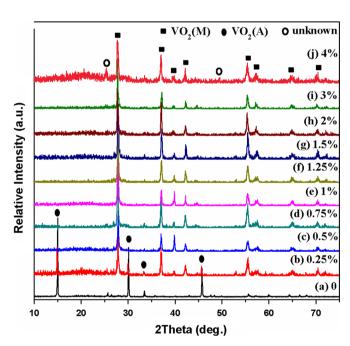



Fig. 4. XRD patterns of the as-obtained  $VO_2$  with various extents of W doping.

their ability to accommodate point defects through crystal-lographic shear [36,68]. Thus, it is imperative to maintain an appropriate concentration of the reducing agent to achieve the correct stoichiometry in the reduction of  $V_2O_5$  to successfully form rutile phase of  $VO_2$ .

The XRD patterns of undoped and W-doped  $VO_2$  with various extents of W doping are shown in Fig. 4. Only  $VO_2(A)$  can be obtained from Fig. 4a, revealing  $VO_2(M)$  cannot be stabilized under the hydrothermal conditions in the absence of W doping, in agreement with the literatures [29,36,37].

 $VO_2(M)$  can be detected with 0.25 at% of W doping. Consequently, phase-pure monoclinic W-doped  $VO_2(M)$  are obtained for W-doping greater than 0.50 at% by this hydrother mal approach. At the relatively low doping concentrations studied here (0.5–3.0 at%), no segregated  $WO_x$  phases have been detected by XRD, suggesting that the W atoms enter into the crystal lattice of  $VO_2$  matrix and the homogeneous solid-solutions of  $W_xV_{1-x}O_2(M)$  are formed. However, when the concentration of W-doped fractions is increased to 4.0 at% or higher, some unknown peaks are observed due to the residual dopants in the system, as shown in Fig. 4j. The reported W doping of the sublattice here is based on W atom concentration added to the initial reaction, as shown in Section 2.1.

To further reveal whether W atoms were doped into the  $VO_2(M)$  lattice, the narrow XRD patterns of W-doped  $VO_2(M)$  with various extents of W doping were carried out, as shown in Fig. 5, where  $2\theta$  is ranging from  $26^{\circ}$  to  $29^{\circ}$  with a scan speed of 0.2 deg/min. With the increasing of W doping, the most prominent reflection, which is indexed to the (011) plane of  $VO_2(M)$ , shows a shift toward smaller  $2\theta$ . This means that the adjacent interplanar spacing  $d_{011}$  increases with increasing extent of substitutional W incorporation within the  $VO_2(M)$  lattice, which is consistent with the larger atomic radius of W. For example, the d-spacing increases from 3.207 Å for undoped  $VO_2(M)$  (JCPDS, no. 43-1051) to 3.221 Å for 1.0 at% W doping into the vanadium sublattice. These results indicate that W atoms substitute V atoms in  $VO_2$  lattice.

To verify if other tungstates can get the similar results, the ammonium tungstate and sodium tungstate were used as the additives to do the experiments and their corresponding XRD patterns were depicted in the Supplementary data (Figs. S1 and S2), which indicated that W-doped VO<sub>2</sub>(M) were also obtained.

#### 3.1.2. EDS, XPS and XRF analysis

Based on the above XRD results, the tungstates can promote the formation of  $VO_2(M)$  by the hydrothermal reduction of

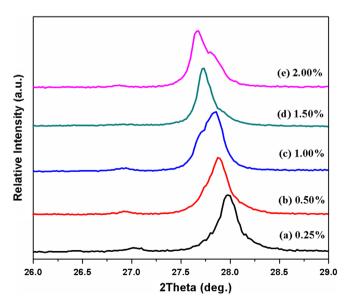



Fig. 5. Narrow XRD patterns  $(26^{\circ} \le 2\theta \le 29^{\circ})$  of VO<sub>2</sub>(M) with various extents of W doping.

 $V_2O_5$  by  $H_2C_2O_4$ . When the reaction conditions are appropriately controlled, there are no impure phases detected by XRD, which suggests the formation of homogeneous  $W_xV_1_{-x}O_2(M)$  solid solutions. To further reveal whether W atoms are doped into the  $VO_2(M)$  lattice, some corresponding tests, including EDS, XPS, and XRF, were carried out.

The composition of the as-obtained W-doped VO<sub>2</sub>(M) was investigated by EDS and XPS. Fig. 6 shows a typical EDS spectrum of W-doped VO<sub>2</sub>(M) sample (2.0 at%), which reveals that the sample only consists of O, V and W elements. Fig. 7 represents the typical XPS spectra of W-doped VO<sub>2</sub>(M) sample (2.0 at%), which contains four elements: O. V. W and C. where the C is attributed to surface contamination (Fig. 7a). The  $O_{1s}$  peak is centered at its standard value (530.0 eV) and  $V_{2p3/2}$ is centered at 516.8 eV, as depicted in Fig. 7b and c, respectively. The value of  $V_{2p3/2}$  peak is slightly higher than that of pure VO<sub>2</sub> powder [69,70], but it is in agreement with the reports of W-doped VO<sub>2</sub>(M) [42], suggesting that the binding energy of V<sub>2p3/2</sub> increased slightly after W doping. The peaks located at 245.8 (Fig. 7a), 37.4 and 35.3 eV (Fig. 7d) are attributed to W<sub>4d</sub>, W<sub>4f5/2</sub> and W<sub>4f7/2</sub>, respectively, indicating the successful synthesis of W-doped VO2. According to the standard binding energy, the existing form of tungsten ion in these powders is W<sup>6+</sup> [54,70]. Besides, the binding energy centered at 42.3 eV in Fig. 7d is indexed to  $V_{3p}$ .

The variation of the final content for different elements mainly depends on the solubility of different chemicals under the hydrothermal condition. To determine the final doping amount of W in the samples, XRF was performed. Fig. 8 shows the W atomic percent in W-doped VO<sub>2</sub>(M) as a function of W atomic percent in feed, which reveals that the real contents of W in final products are slightly higher than its corresponding nominal contents. These results indicate that some vanadium remains in the solution after hydrothermal treatment, which is consistent with the reference [42]. However, the

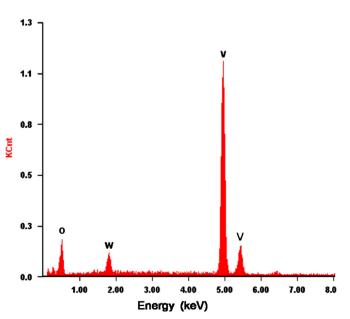
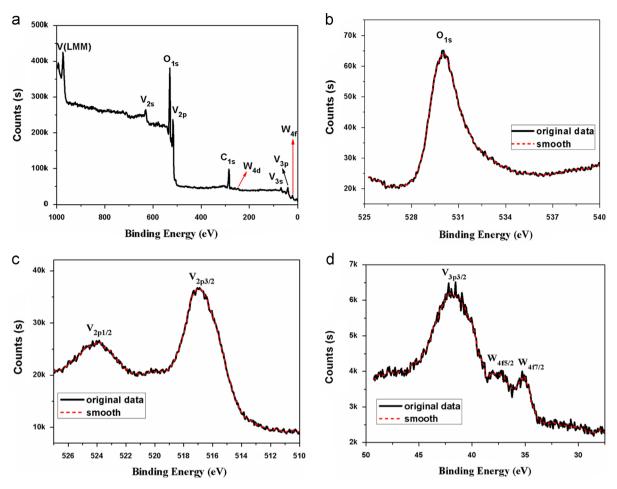




Fig. 6. Typical EDS spectrum of W-doped VO<sub>2</sub>(M).



 $Fig.~7.~Typical~XPS~spectra~of~W-doped~VO_2(M):~(a)~survey~spectrum;~(b)~core-level~spectrum~of~O_{1s};~(c)~core-level~spectrum~of~V_{2p};~and~(d)~core-level~spectrum~of~W_{4f}.$ 

tungsten atomic percent in  $W_xV_{1-x}O_2(M)$  solid solution is basically the same as the W atomic percent in feed, indicating that the tungsten content in  $W_xV_{1-x}O_2(M)$  solid solution can be easily controlled by the change of dopants concentration in our process, which is crucial for the large-scale manufacture.

# 3.1.3. DSC analysis

W is the most effective dopant for reducing the  $T_c$  on per atomic percent basis. Here, the phase transition properties of W-doped VO<sub>2</sub>(M) were studied by DSC. Fig. 9 shows DSC data demonstrating the influence of W doping on the  $T_c$  and hysteresis of the MIT. As noted above, polycrystalline VO<sub>2</sub>(M) exhibits a reversible thermally induced first-order MIT at 68 °C, between a high temperature metallic phase and a low temperature insulating phase. The phase transition is first-order in nature and thus associated with a latent heat and a pronounced change in the specific heat capacity [36,43]. The two primary contributions to the latent heat at the phase transition arise from the lattice distortion and the entropy change for conduction electrons because of the discontinuity in the carrier density. Fig. 9a shows the representative DSC curves of W-doped VO<sub>2</sub>(M) (1 at% of W), which display sharp endothermic and exothermic profiles upon heating and cooling cycles, respectively. The  $T_c$  is about 53 °C in the heating cycle

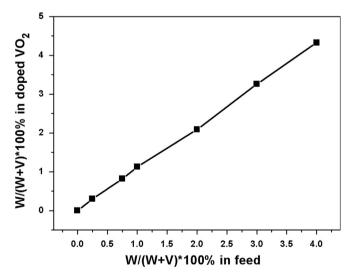
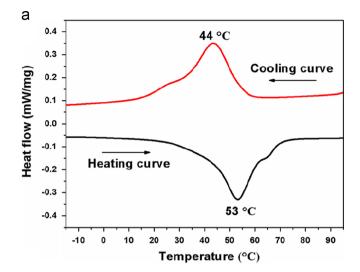




Fig. 8. Relationship of the W atomic percent in W-doped  $VO_2(M)$  solid solution and W atomic percent in feed.

and 44 °C in the cooling cycle, which is due to the hysteresis behavior. Fig. 9b summarizes the  $T_c$  associated with the insulator  $\rightarrow$  metal and metal  $\rightarrow$  insulator phase transitions as a



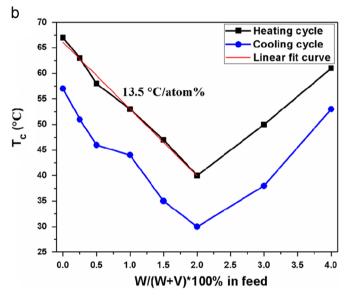
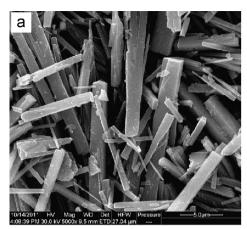



Fig. 9. Effect of W doping on the phase transition temperature  $(T_c)$ : (a) the typical DSC curves for W-doped VO<sub>2</sub>(M) with 1.0 at% upon heating and cooling cycles; and (b) relationship between  $T_c$  and W contents.

function of the extent of W doping. When the concentration of tungsten is not larger than 2.0 at%, the  $T_c$  of W-doped VO<sub>2</sub>(M) is decreased with the increase of tungsten concentration, revealing that W atoms can be effectively doped into VO<sub>2</sub>(M) and the  $T_c$  of  $W_x V_{1-x} O_2(M)$  can be easily tuned. There is an almost linear dependence of the  $T_c$  on the concentration of tungsten not larger than 2.0 at%, for both the heating and cooling cycles, and the least square approximation gives a  $T_c$  reduction efficiency of 13.5 °C/at% W. However, further doping with W has a negative influence on  $T_c$ , because the doping atoms cannot be effectively doped into VO<sub>2</sub>(M) lattice with the higher concentration of dopants. The phase transition behavior of the W-doped VO<sub>2</sub>(M) here differs in some important respects from previous observations of W-doped VO<sub>2</sub>(M) powders, thin films, and single crystals [71,72]. First, a very pronounced hysteresis is observed between the insulator→ metal and metal - insulator transitions. Second, the insulator → metal and metal → insulator transitions show dramatically different dependences on the extent of substitutional W doping. Third, the  $T_c$  for both transitions initially follows a quasi-linear dependence but subsequently rises with W doping exceeding 2.0 at%.

#### 3.1.4. SEM analysis


The morphology and size of the typical samples were investigated by SEM. Fig. 10 depicts the representative morphologies of W-doped VO<sub>2</sub>(M) prepared by this hydrothermal reduction. It can be observed that the W-doped VO<sub>2</sub>(M) predo minantly consists of a large quantity of uniform micro- and nano-structures with well-defined facets. The diameter of rodlike structures ranges from 100 to 500 nm, and the length is up to several tens of micrometers, which leads to the formation of rods with an ultrahigh-aspect-ratio. As suggested by the XRD patterns in Figs. 1-4, while mapping the multidimensional parameter space, the reaction temperature, reaction time, initial V<sub>2</sub>O<sub>5</sub>/oxalic acid molar ratio and W doping concentration exert distinctive influences on the morphologies and crystal structures of the products. Figs. S3, Fig. S4, Fig. S5 and Fig. S6 (Supplementary data) illustrate the influence of the reaction temperature, reaction time, V<sub>2</sub>O<sub>5</sub>/H<sub>2</sub>C<sub>2</sub>O<sub>4</sub> · 2H<sub>2</sub>O ratio and contents of W doping on the morphologies of the obtained products. All the SEM images show the as-obtained samples have rod-like morphology.

#### 3.1.5. Optical properties

The "smart window coating" is the most important application of VO<sub>2</sub>(M). In this paper, the optical properties of W-doped VO<sub>2</sub>(M) (1.0 at%) were investigated by variabletemperature infrared spectra of the heating and cooling cycles, as depicted in Fig. 11. Fig. 11a describes the process of the phase transition of  $VO_2(M)$  below and above  $T_c$ , indicating its  $T_c$  is at 54 °C in the heating cycles and at 42 °C in the cooling cycles, which agrees with the results of DSC (Fig. 9). As shown in Fig. 11b, a significant change in optical properties on switching is observed based on different IR transmittances below or above  $T_c$ . At 80 °C, the sample exhibits low transmittance in IR spectra, however, the sample exhibits high trans mittance at 25 °C. The difference in transmittance suggests that the as-obtained W-doped VO<sub>2</sub>(M) has good thermochromic property. Two spectra below  $T_c$  in Fig. 11b almost have the same optical transmission, indicating the good reversibility of the sample. Besides, the heating and cooling curves in Fig. 11 are asymmetric due to the hysteresis behavior in the sample.

# 3.2. The influence of different additives on the formation of $VO_2$ polymorphs

As suggested by the W-doped  $VO_2(M)$  discussed above,  $W^{6+}$  ions in the system can stabilize the phase and structure of  $VO_2(M)$ , which stimulates us to study other additives influenced on the synthesis of  $VO_2$  by this hydrothermal reaction. Thus, a serial of experiments using different additives as the doping reagents were carried out and their corresponding results were summarized in Table 1. It can be seen from



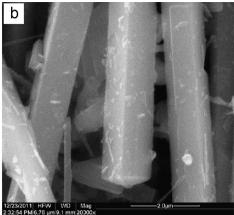
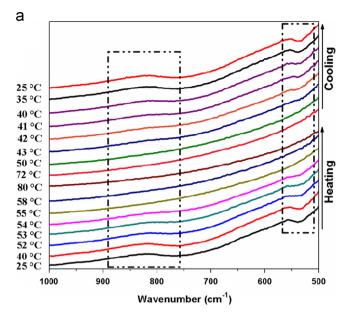



Fig. 10. Typical SEM images of W-doped VO<sub>2</sub>(M): (a) a lower magnification; and (b) a higher magnification.


Table 1, that F, Ti, Cr, Fe, Mo, Sn, Sb and W are favorable for the formation of  $VO_2(M)$ , while Mg, Al, Co and Ni facilitate the synthesis of  $VO_2(B)$ , whereas, only  $VO_2(A)$  is obtained with the atoms Na, Ca, Mn or Zn, which indicates that these additives have no influence on the synthetic process of  $VO_2(A)$  compared with the results without the presence of additives (Fig. 4a).

Through the above experimental results, we know that the additives are crucial for the synthesis of VO<sub>2</sub>(M). Although the detailed formation mechanism of VO<sub>2</sub>(M) by the hydrothermal reduction of V<sub>2</sub>O<sub>5</sub> by H<sub>2</sub>C<sub>2</sub>O<sub>4</sub> in the presence of additives is not entirely clear, we presume it can be attributed to the assistant function of the additives. In order to understand the effects of the additives on the phase transformation mechanism, we first have to know the phase transition among  $VO_2(B)$ ,  $VO_2(A)$ , and  $VO_2(M)$ . In the recent reports [29,36,37,73–75], VO<sub>2</sub>(M/R) cannot be directly synthesized under the hydrothermal conditions in the absence of additives at the temperatures ranging from 180 to 300 °C. Instead of VO<sub>2</sub>(M/R), only VO<sub>2</sub>(B) and VO<sub>2</sub>(A) can be prepared. Théobald [62] studied the phase transformation  $VO_2(B) \rightarrow VO_2(A) \rightarrow VO_2(M)$  by the hydrothermal reaction of the V<sub>2</sub>O<sub>3</sub>-V<sub>2</sub>O<sub>5</sub>-H<sub>2</sub>O system, and it was found that  $VO_2(B)$ ,  $VO_2(A)$ , and  $VO_2(M)$  could be formed at 180, 220 and 350 °C, respectively. Oka et al. [76] reported only VO<sub>2</sub>(A) could be achieved via the hydrothermal method. On the basis of the experiments of Théobald and Oka, Galy [77] proposed that the phase transition  $VO_2(B) \rightarrow VO_2(A)$ is simply a crystallographic slip Cs = 1/3[-100](001), occurring in the median plane of the double layers assembled by VO<sub>6</sub> octahedra of the VO<sub>2</sub>(B) [37]. The mechanochemical activation broke the weakest bonds of the structure and promoted a simple cooperative displacement to give the VO<sub>2</sub> (A). Meanwhile, Leroux studied the phase transformation  $VO_2(B) \rightarrow VO_2(M)$  in situ by electron microscopy [78]. The long range order of the VO6 octahedra was mostly destroyed with increasing temperature, leading to a breakage of the interconnections between different octahedras, which were either corner sharing or edge sharing in the VO<sub>2</sub>(B) structure. Upon continuing heating, the platelets assembled by VO<sub>6</sub> octahedra abruptly broke up into nano-crystallites and half of the VO<sub>6</sub> octahedra re-oriented to form the rutile structure.

Such breaking up is clearly necessary due to the completely different arrangement of the VO<sub>6</sub> octahedra in both structures. Although VO<sub>2</sub>(M) is more energetically stable than VO<sub>2</sub>(A), the breaking of the interconnections between different octahedra needs more energy than the crystallographic slip. Consequently,  $VO_2(B)$  transforms into  $VO_2(A)$  and then  $VO_2(M)$ under hydrothermal conditions. In the doped VO<sub>2</sub>(M), the substitution of a part of V atoms with Ti, Cr, Fe, Mo, Sn, Sb or W atoms can induce the distortion of the VO<sub>6</sub> octahedra, making the breaking of the interconnections between different octahedras easier than the crystallographic slip. Besides, the substitution of a part of O atoms with F atoms can also obtain the same results. F-doped VO<sub>2</sub>(M), which has not been synthesized by the hydrothermal route in the reports, shows a new idea to synthesize doped VO<sub>2</sub>(M) by the substitution of O<sup>2-</sup> with anions. Whereas, the VO<sub>6</sub> octahedra can be stabilized in the presence of Mg, Al, Co or Ni atoms, resulting in the formation of VO<sub>2</sub>(B). However, Na, Ca, Mn or Zn atoms have no influence on the synthesis of VO<sub>2</sub>(A). There may be two reasons: (1) these atoms have little effect on the distortion of the VO<sub>6</sub> octahedra; and (2) Na<sup>+</sup> dissolved in the solution can seldom take part in the reaction, while  $M_2C_2O_4$  (M=Ca, Mn or Zn) as the insoluble salts are very stable under this hydrothermal route (Supplementary data), so they cannot participate in the reaction, either. Therefore, the synthesis of  $VO_2(M)$ , VO<sub>2</sub>(A) or VO<sub>2</sub>(B) by the hydrothermal reaction can be easily controlled by adjusting the additives, which can guide the large-scale preparation of VO<sub>2</sub>(M) for the industrial production.

Fig. 12 depicts the morphologies of doped  $VO_2(M)$  with different additives. In all cases, we note the formation of highly faceted micro- and nano-rods structures wherein the lengths exceed the diameters, in agreement with the SEM observations of W-doped  $VO_2(M)$  discussed above. The micro and nano-rods are expected to result from the intercalation of reducing agents between the layers of  $V_2O_5$ , followed by lattice expansion, cleavage, and exfoliation of stacks of  $V_2O_5$  sheets [36,73].

As suggested by the XRD patterns in Fig. 2 and SEM images in Fig. S4, we know that  $VO_2(B)$  is the intermediate product to synthesize doped  $VO_2(M)$ . After 1 or 3 h,  $VO_2(B)$ 



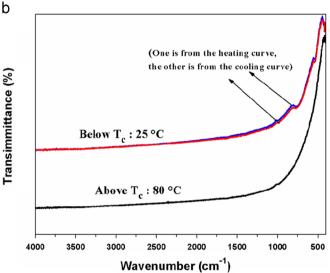



Fig. 11. The variable-temperature IR of 1.0 at% W-doped VO<sub>2</sub>(M): (a) IR curves with different temperatures; and (b) IR curves below and above  $T_c$ .

nanorods are formed, and then  $VO_2(B)$  nanorods are converted to doped  $VO_2(M)$  nanorods with prolonging the time, in the case of the phase transformation  $VO_2(B) \rightarrow VO_2(A)$  reported previously [29,30]. The basic reaction we employed for the syn thesis of  $VO_2$  in our hydrothermal synthesis can be formulated in the following equation:

$$V_2O_5 + 2H_2C_2O_4 \rightarrow 2VO_2 + 3CO_2 + CO + 2H_2O$$

Although the exact growth mechanism of  $VO_2(M)$  micro- and nano-rods is not clear at the current stage, a possible growth mechanism is proposed as the "Reaction–Transformation–Dissolution–Recrystallization" (RTDR) mechanism, which mainly contains four steps as follows: (1)  $VO_2(B)$  nanorods are fast formed by the hydrothermal reaction between  $V_2O_5$  and  $H_2C_2$   $O_4$  in the presence of additives, as shown in Fig. 2a and Fig. S4a. (2)  $VO_2(B)$  is transformed to  $VO_2(M)$ , as depicted in

Table 1
The influence of different additives on the phase of the products.

| No. <sup>a</sup> | Additives                      | Doped atoms | Phases <sup>b</sup>               | VO <sub>2</sub> (M)<br>(%) <sup>c</sup> |
|------------------|--------------------------------|-------------|-----------------------------------|-----------------------------------------|
| 1                | _                              | _           | VO <sub>2</sub> (A)               | 0                                       |
| 2                | HF                             | F           | $VO_2(M)$ , $VO_2(A)$             | 64                                      |
| 3                | NH <sub>4</sub> F              | F           | $VO_2(A)$ , $VO_2(M)$             | 34                                      |
| 4                | NaOH                           | Na          | $VO_2(A)$                         | 0                                       |
| 5                | MgO                            | Mg          | $VO_2(B)$                         | 0                                       |
| 6                | $Al_2O_3$                      | Al          | $VO_2(A), VO_2(B)$                | 0                                       |
| 7                | Al(OH) <sub>3</sub>            | Al          | $VO_2(A), VO_2(B)$                | 0                                       |
| 8                | Ca(OH) <sub>2</sub>            | Ca          | $VO_2(A)$                         | 0                                       |
| 9                | $TiO_2$                        | Ti          | $VO_2(A), VO_2(M)$                | 47                                      |
| 10               | Cr(OH) <sub>3</sub>            | Cr          | $VO_2(A), VO_2(M)$                | 37                                      |
| 11               | $MnO_2$                        | Mn          | $VO_2(A)$                         | 0                                       |
| 12               | $Fe_2O_3$                      | Fe          | $VO_2(A), VO_2(M)$                | 16                                      |
| 13               | Fe(OH) <sub>3</sub>            | Fe          | $VO_2(M), VO_2(A)$                | 71                                      |
| 14               | Co <sub>3</sub> O <sub>4</sub> | Co          | Major $VO_2(A)$ , minor $VO_2(B)$ | 0                                       |
| 15               | Ni(OH) <sub>2</sub>            | Ni          | $VO_2(B)$                         | 0                                       |
| 16               | ZnO                            | Zn          | $VO_2(A)$                         | 0                                       |
| 17               | Molybdenic acid                | Mo          | $VO_2(M)$                         | 100                                     |
| 18               | Ammonium molybdate             | Mo          | $VO_2(M)$                         | 100                                     |
| 19               | Sodium molybdate               | Mo          | $VO_2(M)$                         | 100                                     |
| 20               | SnO                            | Sn          | $VO_2(A), VO_2(M)$                | 46                                      |
| 21               | $Sb_2O_3$                      | Sb          | $VO_2(A), VO_2(M)$                | 27                                      |
| 22               | tungstic acid                  | W           | $VO_2(M)$                         | 100                                     |
| 23               | Ammonium tungstate             | W           | $VO_2(M)$                         | 100                                     |
| 24               | Sodium tungstate               | W           | $VO_2(M)$                         | 100                                     |

 $^aReaction$  conditions: 0.91~g of  $V_2O_5$  powder, 1.26~g of  $H_2C_2O_4\cdot 2H_2O$ , 40~mL of  $H_2O$ , 1.0 at% of the additive atoms and the reaction temperature and time are at  $280~^\circ C$  for 48~h.

Fig. 2b, c and Fig. S4b. (3) The irregular and broken fragments of  $VO_2(M)$  is dissolved into the solution to help the growth of  $VO_2(M)$  nanorods, which can be observed from Fig. S4b–d. (4)  $VO_2(M)$  nanorods are continuing to grow and the fragments become fewer and fewer. In a word, the formation of  $VO_2(M)$  micro- and nano-rods can be described as the process of transformation, dissolution and recrystallization [29].

Table 2 summarizes the influence of different doped atoms on the  $T_c$  of the doped VO<sub>2</sub>(M). The  $T_c$  of the samples is decreased to 53, 56 and 53 °C with the doped W, Mo and F atoms, respectively, which suggests that W, Mo and F atoms can reduce the  $T_c$ , in agreement with the previous reports [14,34–38]. However, the Ti, Cr, Fe, Sn and Sb atoms which can promote the formation of VO<sub>2</sub>(M) have little effect on the  $T_c$ . Up to now, the research about the exact mechanism how the doped atoms can reduce the  $T_c$  of VO<sub>2</sub>(M) is still processing [79]. Some scientists have tried to disclose the reduction mechanism taking W atom as an example. According to the model of Tang et al. [71], W<sup>6+</sup> penetrates into the crystal lattice of VO<sub>2</sub> and substitutes the V<sup>4+</sup> ion. As a result of charge compensation, V<sup>3+</sup>–V<sup>4+</sup> and V<sup>3+</sup>–W<sup>6+</sup> pairs along the

<sup>&</sup>lt;sup>b</sup>The phases of the products were examined by XRD.

<sup>&</sup>lt;sup>c</sup>Percentage of VO<sub>2</sub>(M) among the total product calculated by comparing the intensity of the strongest XRD lines with that of VO<sub>2</sub>(A) and VO<sub>2</sub>(B).

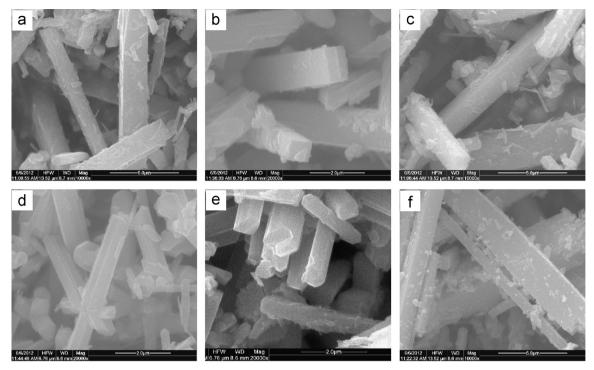



Fig. 12. SEM images of doped VO<sub>2</sub>(M) solid solution with different dopants: (a) F; (b) Ti; (c) Cr; (d) Fe; (e) Mo; and (f) Sb.

Table 2
The results of the DSC for samples doped with different elements.

| No. | Doped atom (1.0 at%) | $T_c$ (heating curve)/°C | $T_c$ (heating curve)/°C |
|-----|----------------------|--------------------------|--------------------------|
| 1   | F                    | 53                       | 43                       |
| 2   | Ti                   | 67                       | 53                       |
| 3   | Cr                   | 68                       | 52                       |
| 4   | Fe                   | 66                       | 48                       |
| 5   | Mo                   | 56                       | 53                       |
| 6   | Sn                   | 68                       | 54                       |
| 7   | Sb                   | 67                       | 56                       |
| 8   | W                    | 53                       | 44                       |

a-axis of the monoclinic VO<sub>2</sub> cell are formed. With the enhancement of the electron concentration from the presence of W donors, the loss of V<sup>4+</sup>–V<sup>4+</sup> pairs becomes more and more obvious, resulting that the semiconductor phase becomes destabilized and the band gap is reduced. Thus, the metal-to-semiconductor transition temperature is decreased. Based on the above results, the research about mechanism of reducing the  $T_c$  of VO<sub>2</sub>(M) by doping still requires a lot of effort by scientists.

# 3.3. The enlarged-scale experiments for preparing doped $VO_2(M)$

So far, many methods have been developed for the synthesis of  $VO_2(M)$  and doped  $VO_2(M)$ . However, there are few literatures reported the large-scale and facile synthesis of  $VO_2(M)$  and doped  $VO_2(M)$ . In this paper, we amplify the experiments to 20 times, which is very meaningful before their enlarged-scale experiments. Excitingly, the similar results were obtained

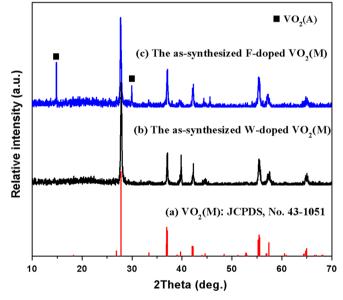



Fig. 13. XRD patterns of W- and F-doped  $VO_2(M)$  prepared by the enlarged-scale experiments.

based on the observation of XRD (Fig. 13), SEM (Fig. 14) and DSC (Fig. 15), the suggestive of its potentially industrial production in future. As shown in Fig. 13, W- and F-doped  $VO_2(M)$  can be successfully synthesized by this pilot-scale experiments. The SEM images (Fig. 14) reveal that the asobtained products consist of highly faceted micro- and nanobelts structures with rectangular cross-sections. The  $T_c$  of W-doped  $VO_2(M)$  is about 53 °C in the heating cycle and 46 °C in the cooling cycle, while the  $T_c$  of F-doped  $VO_2(M)$  is

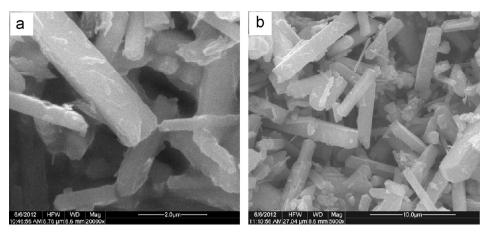



Fig. 14. SEM images of W- and F-doped VO<sub>2</sub>(M) prepared by the enlarged-scale experiments: (a) W-doped; and (b) F-doped.

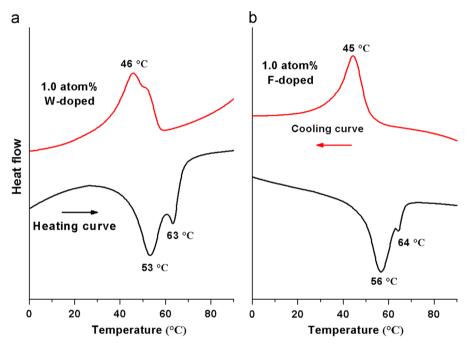



Fig. 15. DSC curves of W- and F-doped VO<sub>2</sub>(M) prepared by the enlarged-scale experiments.

about 56 °C in the heating cycle and 45 °C in the cooling cycle, as depicted in Fig. 15.

### 4. Conclusion

- (1) W-doped VO<sub>2</sub>(M) was successfully synthesized via a hydrothermal reduction of V<sub>2</sub>O<sub>5</sub> by H<sub>2</sub>C<sub>2</sub>O<sub>4</sub> in the presence of tungstic acid. Some parameters, such as the reaction temperature, reaction time, initial V<sub>2</sub>O<sub>5</sub>/oxalic acid molar ratio, tungstic acid concentration, were systematically investigated to reveal the formation of W-doped VO<sub>2</sub>(M). The  $T_c$  of W-doped VO<sub>2</sub>(M) can be simply tuned by changing the doping content of W atom when its concentration is less than 2.0 at%.
- (2) The influence of different additives on the formation of VO<sub>2</sub> polymorphs by this facile hydrothermal route was
- studied. F, Ti, Cr, Fe, Mo, Sn, Sb and W atoms can promote the formation of  $VO_2(M)$ , while Mg, Al, Co and Ni atoms are favorable for the synthesis of  $VO_2(B)$ . Whereas, Na, Ca, Mn and Zn atoms have no influence on the formation of  $VO_2(A)$ . The successful synthesis of  $VO_2$  polymorphs can be attributed to the assistant function of the additives, which can affect the stabilization of the  $VO_6$  octahedra in  $VO_2$ . W, Mo and F atoms can reduce the  $T_c$  of  $VO_2(M)$ , whereas Ti, Cr, Fe, Sn and Sb atoms have little effect on the  $T_c$ .
- (3) All of the as-obtained solid solutions of  $VO_2(M)$  have rodlike morphology in micro- and nano-scale.
- (4) The variable-temperature infrared spectra show that the asobtained doped VO<sub>2</sub>(M) has outstanding thermochromic characters and optical switching properties, which can be used as the "smart window coating" and be beneficial

- for the development and application of thermochromic materials.
- (5) The enlarged-scale experiments for the preparation of doped VO<sub>2</sub>(M) were carried out, and the similar results were obtained, the suggestive of its large-scale and low-cost synthesis, which can be used for potentially industrial production in future.

### Acknowledgment

This work was partially supported by the Fundamental Research Funds for the Central Universities, the Youth Chenguang Project of Wuhan (201271031377), the Combination Project of Guangdong Province and the Ministry of Education (2011B090400397), and the Fundamental Research Funds for the Central Universities —Luojia Young Scholars Program (217273483).

## Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.ceramint. 2013.04.016.

#### References

- [1] X. Wang, J. Song, J. Liu, Z.L. Wang, Direct-current nanogenerator driven by ultrasonic waves, Science 316 (5821) (2007) 102–105.
- [2] Y. Wu, J. Xiang, C. Yang, W. Lu, C.M. Lieber, Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures, Nature 430 (2004) 61–65.
- [3] Y. Zhang, M. Fan, X. Liu, C. Huang, H. Li, Beltlike V<sub>2</sub>O<sub>3</sub>@C core–shell-structured composite: design, preparation, characterization, phase transition, and improvement of electrochemical properties of V<sub>2</sub>O<sub>3</sub>, European Journal of Inorganic Chemistry 2012 (10) (2012) 1650–1659.
- [4] Y. Zhang, X. Liu, J. Nie, L. Yu, Y. Zhong, C. Huang, Improve the catalytic activity of α-Fe<sub>2</sub>O<sub>3</sub> particles in decomposition of ammonium perchlorate by coating amorphous carbon on their surface, Journal of Solid State Chemistry 184 (2) (2011) 387–390.
- [5] B.S. Guiton, Q. Gu, A.L. Prieto, M.S. Gudiksen, H. Park, Single-crystalline vanadium dioxide nanowires with rectangular cross sections, Journal of the American Chemical Society 127 (2) (2005) 498–499.
- [6] P.X. Gao, Y. Ding, W. Mai, W.L. Hughes, C. Lao, Z.L. Wang, Conversion of zinc oxide nanobelts into superlattice-structured nanohelices, Science 309 (2005) 1700–1704.
- [7] C. Lao, Y. Li, C.P. Wong, Z.L. Wang, Enhancing the electrical and optoelectronic performance of nanobelt devices by molecular surface functionalization, Nano Letters 7 (5) (2007) 1323–1328.
- [8] Y. Zhang, X. Liu, G. Xie, L. Yu, S. Yi, M. Hu, C. Huang, Hydrothermal synthesis, characterization, formation mechanism and electrochemical property of V<sub>3</sub>O<sub>7</sub>·H<sub>2</sub>O single-crystal nanobelts, Materials Science and Engineering: B 175 (2) (2010) 164–171.
- [9] Y. Zhang, J. Zhang, J. Nie, Y. Zhong, X. Liu, C. Huang, Facile synthesis of V<sub>2</sub>O<sub>3</sub>/C composite and the effect of V<sub>2</sub>O<sub>3</sub> and V<sub>2</sub>O<sub>3</sub>/C on decomposition of ammonium perchlorate, Micro and Nano Letters 7 (8) (2012) 782–785.
- [10] Y. Zhang, M. Fan, L. Hu, W. Wu, J. Zhang, X. Liu, Y. Zhong, C. Huang, Fabrication of V<sub>2</sub>O<sub>3</sub>/C core–shell structured composite and VC nanobelts by the thermal treatment of VO<sub>2</sub>/C composite, Applied Surface Science 258 (24) (2012) 9660–9665.
- [11] Y. Zhang, F. Zhang, L. Yu, M. Fan, Y. Zhong, X. Liu, Y. Mao, C. Huang, Synthesis and characterization of belt-like VO<sub>2</sub>(B)@carbon

- and  $V_2O_3$ @carbon core–shell structured composites, Colloids and Surfaces A 396 (2012) 144–152.
- [12] E. Strelcov, Y. Lilach, A. Kolmakov, Gas sensor based on metal -insulator transition in VO<sub>2</sub> nanowire thermistor, Nano Letters 9 (6) (2009) 2322-2326.
- [13] Y.F. Zhang, X.H. Liu, D.Z. Chen, L. Yu, J.R. Nie, S.P. Yi, H.B. Li, C. Huang, Fabrication of V<sub>3</sub>O<sub>7</sub>·H<sub>2</sub>O@C core–shell nanostructured composites and the effect of V<sub>3</sub>O<sub>7</sub>·H<sub>2</sub>O and V<sub>3</sub>O<sub>7</sub>·H<sub>2</sub>O@C on decomposition of ammonium perchlorate, Journal of Alloys and Compounds 509 (5) (2011) L69–L73.
- [14] I.P. Parkin, T.D. Manning, Intelligent thermochromic windows, Journal of Chemical Education 83 (3) (2006) 393–400.
- [15] Y.F. Zhang, M. Zhou, M.J. Fan, C. Huang, C.X. Chen, Y.L. Cao, H.B. Li, X.H. Liu, Improvement of the electrochemical properties of V<sub>3</sub>O<sub>7</sub>·H<sub>2</sub>O nanobelts for Li battery application through synthesis of V<sub>3</sub>O<sub>7</sub>@C core–shell nanostructured composites, Current Applied Physics 11 (5) (2011) 1159–1163.
- [16] H.S. Zhou, H.Q. Li, P. He, Y.G. Wang, E. Hosono, High-surface vanadium oxides with large capacities for lithium-ion batteries: from hydrated aerogel to nanocrystalline VO<sub>2</sub>(B), V<sub>6</sub>O<sub>13</sub> and V<sub>2</sub>O<sub>5</sub>, Journal of Materials Chemistry 21 (29) (2011) 10999–11009.
- [17] S. Milošević, I. Stojković, S. Kurko, J.G. Novaković, N. Cvjetićanin, The simple one-step solvothermal synthesis of nanostructurated  $VO_2(B)$ , Ceramics International 38 (3) (2012) 2313–2317.
- [18] Y. Zhang, C. Chen, W. Wu, F. Niu, X. Liu, Y. Zhong, Y. Cao, X. Liu, C. Huang, Facile hydrothermal synthesis of vanadium oxides nanobelts by ethanol reduction of peroxovanadium complexes, Ceramics International 39 (1) (2013) 129–141.
- [19] K. Kim, S. Han Park, T. Hyung Kwon, H. Ahn, Y. Dam Eo, M.-J. Lee, Reaction sequence and electrochemical properties of lithium vanadium oxide cathode materials synthesized via a hydrothermal reaction, Ceramics International 39 (2) (2013) 1623–1629.
- [20] Y. Zhang, C. Chen, J. Zhang, L. Hu, W. Wu, Y. Zhong, Y. Cao, X. Liu, C. Huang, Fabrication of belt-like VO<sub>2</sub>(M)@C core-shell structured composite to improve the electrochemical properties of VO<sub>2</sub>(M), Current Applied Physics 13 (1) (2013) 47–52.
- [21] S. Milošević, Ž. Rašković-Lovre, S. Kurko, R. Vujasin, N. Cvjetićanin, L. Matović, J. Grbović Novaković, Influence of VO<sub>2</sub> nanostructured ceramics on hydrogen desorption properties from magnesium hydride, Ceramics International 39 (1) (2013) 51–56.
- [22] W. Yu, J. Wang, Z. Gou, W. Zeng, W. Guo, L. Lin, Hydrothermal synthesis of vanadium pentoxide nanostructures and their morphology control, Ceramics International 39 (3) (2013) 2639–2643.
- [23] Y. Zhang, J. Zhang, Y. Zhong, L. Yu, Y. Deng, C. Huang, X. Liu, Direct fabrication of organic carbon coated VO<sub>2</sub>(B) (VO<sub>2</sub>(B)@C) core–shell structured nanobelts by one step hydrothermal route and its formation mechanism, Applied Surface Science 263 (2012) 124–131.
- [24] D. Hagrman, J. Zubieta, C.J. Warren, L.M. Meyer, M.M.J. Treacy, R.C. Haushalter, A new polymorph of VO<sub>2</sub> prepared by soft chemical methods, Journal of Solid State Chemistry 138 (1998) 178–182.
- [25] B.Y. Qu, L. Liu, Y. Xie, B.C. Pan, Theoretical study of the new compound VO<sub>2</sub>(D), Physics Letters A 375 (39) (2011) 3474–3477.
- [26] J.A. Ni, W.T. Jiang, K. Yu, Y.F. Gao, Z.Q. Zhu, Hydrothermal synthesis of VO<sub>2</sub>(B) nanostructures and application in aqueous Li-ion battery, Electrochimica Acta 56 (5) (2011) 2122–2126.
- [27] Y. Zhang, M. Fan, M. Zhou, C. Huang, C. Chen, Y. Cao, G. Xie, H. Li, X. Liu, Controlled synthesis and electrochemical properties of vanadium oxides with different nanostructures, Bulletin of Materials Science 35 (3) (2012) 369–376.
- [28] S. Zhang, B. Shang, J. Yang, W. Yan, S. Wei, Y. Xie, From VO<sub>2</sub>(B) to VO<sub>2</sub>(A) nanobelts: first hydrothermal transformation, spectroscopic study and first principles calculation, Physical Chemistry Chemical Physics 13 (2011) 15873–15881.
- [29] Y. Zhang, Y. Huang, J. Zhang, W. Wu, F. Niu, Y. Zhong, X. Liu, X. Liu, C. Huang, Facile synthesis, phase transition, optical switching and oxidation resistance properties of belt-like VO<sub>2</sub>(A) and VO<sub>2</sub>(M) with a rectangular cross section, Materials Research Bulletin 47 (8) (2012) 1978–1986.

- [30] Y. Zhang, M. Fan, X. Liu, G. Xie, H. Li, C. Huang, Synthesis of VO<sub>2</sub>(A) nanobelts by the transformation of VO<sub>2</sub>(B) under the hydrothermal treatment and its optical switching properties, Solid State Communications 152 (4) (2012) 253–256.
- [31] Y. Zhang, M. Fan, F. Niu, Y. Zhong, C. Huang, X. Liu, B. Wang, H. Li, Hydrothermal synthesis of VO<sub>2</sub>(A) nanobelts and their phase transition and optical switching properties, Micro and Nano Letters 6 (11) (2011) 888–801
- [32] F.J. Morin, Oxides which show a metal-to-insulator transition at the Neel temperature, Physical Review Letters 3 (1959) 34–36.
- [33] A. Zylbersztejn, N.F. Mott, Metal-insulator transition in vanadium dioxide, Physical Review B 11 (11) (1975) 4383–4395.
- [34] W. Burkhardt, T. Christmann, S. Franke, W. Kriegseis, D. Meister, B.K. Meyer, W. Niessner, D. Schalch, A. Scharmann, Tungsten and fluorine co-doping of VO<sub>2</sub> films, Thin Solid Films 402 (1-2) (2002) 226-231.
- [35] J. Li, C.Y. Liu, L.J. Mao, The character of W-doped one-dimensional VO<sub>2</sub>(M), Journal of Solid State Chemistry 182 (10) (2009) 2835–2839.
- [36] L. Whittaker, T.L. Wu, C.J. Patridge, G. Sambandamurthy, S. Banerjee, Distinctive finite size effects on the phase diagram and metal–insulator transitions of tungsten-doped vanadium(IV) oxide, Journal of Materials Chemistry 21 (15) (2011) 5580–5592.
- [37] C.X. Cao, Y.F. Gao, H.J. Luo, Pure single-crystal rutile vanadium dioxide powders: synthesis, mechanism and phase-transformation property, Journal of Physical Chemistry C 112 (48) (2008) 18810–18814.
- [38] T.J. Hanlon, J.A. Coath, M.A. Richardson, Molybdenum-doped vanadium dioxide coatings on glass produced by the aqueous sol–gel method, Thin Solid Films 436 (2) (2003) 269–272.
- [39] Y. Zhang, W. Li, M. Fan, F. Zhang, J. Zhang, X. Liu, H. Zhang, C. Huang, H. Li, Preparation of W- and Mo-doped VO<sub>2</sub>(M) by ethanol reduction of peroxovanadium complexes and their phase transition and optical switching properties, Journal of Alloys and Compounds 544 (2012) 30–36.
- [40] A.W. Smith, Optical storage in vanadium dioxide films, Applied Physics Letters 23 (8) (1973) 437–438.
- [41] T.D. Manning, I.P. Parkin, M.E. Pemble, D. Sheel, D. Vernardou, Intelligent window coatings: atmospheric pressure chemical vapor deposition of tungsten-doped vanadium dioxide, Chemistry of Materials 16 (4) (2004) 744–749.
- [42] S. Ji, F. Zhang, P. Jin, Preparation of high performance pure single phase VO<sub>2</sub> nanopowder by hydrothermally reducing the V<sub>2</sub>O<sub>5</sub> gel, Solar Energy Materials and Solar Cells 95 (12) (2011) 3520–3526.
- [43] Y. Zhang, M. Fan, F. Niu, W. Wu, C. Huang, X. Liu, H. Li, X. Liu, Belt-like VO<sub>2</sub>(M) with a rectangular cross section: a new route to prepare, the phase transition and the optical switching properties, Current Applied Physics 12 (3) (2012) 875–879.
- [44] C.G. Granqvist, Window coatings for the future, Thin Solid Films 193–194 (Part 2) (1990) 730–741.
- [45] M.-H. Lee, J.-S. Cho, Better thermochromic glazing of windows with anti-reflection coating, Thin Solid Films 365 (1) (2000) 5–6.
- [46] M.-H. Lee, Thermochromic glazing of windows with better luminous solar transmittance, Solar Energy Materials and Solar Cells 71 (4) (2002) 537–540.
- [47] Z.F. Peng, Y. Wang, Y.Y. Du, D. Lu, D.Z. Sun, Phase transition and IR properties of tungsten-doped vanadium dioxide nanopowders, Journal of Alloys and Compounds 480 (2) (2009) 537–540.
- [48] H. Wang, X. Yi, Y. Li, Fabrication of VO<sub>2</sub> films with low transition temperature for optical switching applications, Optics Communications 256 (4–6) (2005) 305–309.
- [49] Y. Zhang, Y. Mao, D. Chen, W. Wu, S. Yi, S. Mo, C. Huang, Synthesis and characterization of addition-type silicone rubbers (ASR) using a novel cross linking agent PH prepared by vinyl-POSS and PMHS, Polymer Degradation and Stability 98 (4) (2013) 916–925.
- [50] D. Chen, Y. Liu, C. Huang, Synergistic effect between POSS and fumed silica on thermal stabilities and mechanical properties of room temperature vulcanized (RTV) silicone rubbers, Polymer Degradation and Stability 97 (3) (2012) 308–315.

- [51] S.A. Lawton, E.A. Theby, Effect of tungsten and molybdenum doping on the semiconductor-metallic transition in vanadium dioxide produced by evaporative decomposition of solutions and hydrogen reduction, Journal of the American Ceramic Society 78 (1) (1995) 238–240.
- [52] Y. Zhang, M. Fan, W. Wu, L. Hu, J. Zhang, Y. Mao, C. Huang, X. Liu, A novel route to fabricate belt-like VO<sub>2</sub>(M)@C core–shell structured composite and its phase transition properties, Materials Letters 71 (2012) 127–130
- [53] C.M. Zheng, X.M. Zhang, J.H. Zhang, K.R. Liao, Preparation and characterization of VO<sub>2</sub> nanopowders, Journal of Solid State Chemistry 156 (2) (2001) 274–280.
- [54] Z.F. Peng, W. Jiang, H. Liu, Synthesis and electrical properties of tungsten-doped vanadium dioxide nanopowders by thermolysis, Journal of Physical Chemistry C 111 (3) (2007) 1119–1122.
- [55] S. Yamamoto, N. Kasai, Y. Shimakawa, Preparation of monodisperse and spherical rutile VO<sub>2</sub> fine particles, Chemistry of Materials 21 (2) (2008) 198–200.
- [56] J.Q. Shi, S.X. Zhou, B. You, L.M. Wu, Preparation and thermochromic property of tungsten-doped vanadium dioxide particles, Solar Energy Materials and Solar Cells 91 (19) (2007) 1856–1862.
- [57] X. Liu, C. Huang, S. Yi, G. Xie, H. Li, Y. Luo, A new solvothermal method of preparing VO<sub>2</sub> nanosheets and petaloid clusters, Solid State Communications 144 (2007) 259–263.
- [58] C.Z. Wu, J. Dai, X.D. Zhang, J.L. Yang, F. Qi, C. Gao, Y. Xie, Direct confined-space combustion forming monoclinic vanadium dioxides, Angewandte Chemie International Edition 49 (1) (2010) 134–137.
- [59] J.H. Son, J. Wei, D. Cobden, G.Z. Cao, Y.N. Xia, Hydrothermal synthesis of monoclinic VO<sub>2</sub> micro- and nanocrystals in one step and their use in fabricating inverse opals, Chemistry of Materials 22 (10) (2010) 3043–3050.
- [60] S.D. Ji, Y. Zhao, F. Zhang, P. Jin, Direct formation of single crystal VO<sub>2</sub>(R) nanorods by one-step hydrothermal treatment, Journal of Crystal Growth 312 (2) (2010) 282–286.
- [61] C.X. Cao, Y.F. Gao, L.T. Kang, H.J. Luo, Self-assembly and synthesis mechanism of vanadium dioxide hollow microspheres, CrystEngComm 12 (12) (2010) 4048–4051.
- [62] F. Théobald, Étude hydrothermale du système VO<sub>2</sub>-VO<sub>2,5</sub>-H<sub>2</sub>O, Journal of the Less Common Metals 53 (1) (1977) 55-71.
- [63] Z. Gui, R. Fan, X.H. Chen, Y.C. Wu, A new metastable phase of needlelike nanocrystalline VO<sub>2</sub> center dot H<sub>2</sub>O and phase transformation, Journal of Solid State Chemistry 157 (2) (2001) 250–254.
- [64] Y. Zhang, J. Zhang, X. Zhang, C. Huang, Y. Zhong, Y. Deng, The additives W, Mo, Sn and Fe for promoting the formation of VO<sub>2</sub>(M) and its optical switching properties, Materials Letters 92 (2013) 61–64
- [65] Y. Zhang, J. Zhang, X. Zhang, S. Mo, W. Wu, F. Niu, Y. Zhong, X. Liu, C. Huang, X. Liu, Direct preparation and formation mechanism of beltlike doped VO2(M) with rectangular cross sections by one-step hydrothermal route and their phase transition and optical switching propert ies, Journal of Alloys and Compounds 570 (2013) 104–113.
- [66] F. Theobald, R. Cabala, J. Bernard, Essai sur la structure de VO<sub>2</sub>(B), Journal of Solid State Chemistry 17 (4) (1976) 431–438.
- [67] J.M. Longo, P. Kierkegaard, A refinement of the structure of VO<sub>2</sub>, Acta Chemica Scandinavica 24 (1970) 420–428.
- [68] S. Surnev, M.G. Ramsey, F.P. Netzer, Vanadium oxide surface studies, Progress in Surface Science 73 (4–8) (2003) 117–165.
- [69] G. Silversmit, D. Depla, H. Poelman, G.B. Marin, R.D. Gryse, Determination of the V2p XPS binding energies for different vanadium oxidation states ( $V^{5+}$  to  $V^{0+}$ ), Journal of Electron Spectroscopy and Related Phenomena 135 (2004) 167–175.
- [70] C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, Handbook of X-Ray Photoelectrom Spectroscopy, Perkin-Elmer Corporation, Minnesota, 1979.
- [71] C. Tang, P. Georgopoulos, M.E. Fine, J.B. Cohen, M. Nygren, G.S. Knapp, A. Aldred, Local atomic and electronic arrangements in  $W_xV_{1-x}O_2$ , Physical Review B 31 (2) (1985) 1000–1011.
- [72] M. Tazawa, K. Yoshimura, K. Igarashi, S. Tanemura, K. Macák, U. Helmersson, Epitaxial growth of W-doped VO<sub>2</sub>/V<sub>2</sub>O<sub>3</sub> multilayer on

- $\alpha\text{-}Al_2O_3(110)$  by reactive magnetron sputtering, Thin Solid Films 375 (1–2) (2000) 128–131.
- [73] L. Whittaker, H. Zhang, S. Banerjee, VO<sub>2</sub> nanosheets exhibiting a well-defined metal-insulator phase transition, Journal of Materials Chemistry 19 (19) (2009) 2968–2974.
- [74] S.A. Corr, M. Grossman, J.D. Furman, B.C. Melot, A.K. Cheetham, K.R. Heier, R. Seshadri, Controlled reduction of vanadium oxide nanoscrolls: crystal structure, morphology, and electrical properties, Chemistry of Materials 20 (20) (2008) 6396–6404.
- [75] S.A. Corr, M. Grossman, Y.F. Shi, K.R. Heier, G.D. Stucky, R. Seshadri, VO<sub>2</sub>(B) nanorods: solvothermal preparation, electrical properties, and conversion to rutile VO<sub>2</sub> and V<sub>2</sub>O<sub>3</sub>, Journal of Materials Chemistry 19 (25) (2009) 4362–4367.
- [76] Y. Oka, T. Yao, N. Yamamoto, Structural phase transition of VO<sub>2</sub>(B) to VO<sub>2</sub>(A), Journal of Materials Chemistry 1 (5) (1991) 815–818.
- [77] J. Galy, A proposal for (B) VO<sub>2</sub>⇒(A) VO<sub>2</sub> phase transition: a simple crystallographic slip, Journal of Solid State Chemistry 148 (2) (1999) 224–228.
- [78] C. Leroux, G. Nihoul, G. Van Tendeloo, From VO<sub>2</sub>(B) to VO<sub>2</sub>(R): theoretical structures of VO<sub>2</sub> polymorphs and in situ electron microscopy, Physical Review B 57 (9) (1998) 5111–5121.
- [79] J.W. Ye, L. Zhou, F.J. Liu, J. Qi, W.T. Gong, Y.A. Lin, G.L. Ning, Preparation, characterization and properties of thermochromic tungstendoped vanadium dioxide by thermal reduction and annealing, Journal of Alloys and Compounds 504 (2) (2010) 503–507.