

Available online at www.sciencedirect.com

ScienceDirect

Ceramics International 39 (2013) 9727–9730

www.elsevier.com/locate/ceramint

Short communication

In-situ diffuse phase transition at the Curie point of BaTiO₃ induced by amphoteric Ce³⁺/Ce⁴⁺ ions

Da-Yong Lu^{a,*}, Dan-Dan Han^{a,b}

^aResearch Center for Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China ^bCollege of Chemistry, Northeast Normal University, Changchun 130024, China

> Received 30 March 2013; received in revised form 16 April 2013; accepted 16 April 2013 Available online 22 April 2013

Abstract

Nominal $(Ba_{1-x}Ce_x)(Ti_{0.95-x/4}Ce_{0.05})O_3$ ceramics were prepared by a solid state reaction method. A complete solid solution called BC3TC5 was formed only at x=0.03, with a single-phase perovskite structure. The structural and dielectric properties of BC3TC5 were investigated by X-ray diffraction, scanning electron microscopy, Raman spectroscopy, electron paramagnetic resonance, and dielectric measurements. BC3TC5 exhibited a cubic structure and a non-uniform microstructure. Ti-vacancy defects exist in BC3TC5, which has a feature of mixed valence of Basite Ce^{3+} and Ti-site Ce^{4+} . The amphoteric Ce^{3+}/Ce^{4+} ions can induce an *in-situ* diffuse phase transition at the Curie point of BaTiO₃ $(T_C=125\ ^{\circ}C)$. BC3TC5 exhibits a high-k behavior $(\varepsilon'_{m}=9470)$ and low dielectric loss (tan $\delta < 0.025$).

Keywords: A. Powders: solid state reaction and sintering; B. Defects; C. Dielectric properties; D. BaTiO₃ and titanates

1. Introduction

As a candidate for capacitor applications, a Y5V-type Ba $(Ti_{1-y}Ce_y)O_3$ ceramic occurred at y=0.2 and showed a low rare-earth efficiency and dielectric permittivity ($\varepsilon'_{\rm m} = \sim 2100$) [1]. In terms of La doping in Ba($Ti_{1-\nu}Ce_{\nu}$)O₃, a high-k 'Y5V' ceramic $(Ba_{1-x}La_x)(Ti_{1-y-x/4}Ce_y)O_3$ (x=0.03, y=0.05) with room-temperature permittivity of $\varepsilon'_{RT} > 10000$ can be achieved and the rare-earth efficiency can be raised significantly [2]. It is obvious that La doping at Ba sites plays an important role in a rapid peak shift toward low temperature and a rise in ε'_{RT} . (Ba_{1-x}La_x)(Ti_{1-y-x/4}Ce_y)O₃ can be considered as a solid solution of $(Ba_{1-x}La_x)Ti_{1-x/4}O_3$ and $Ba(Ti_{1-y}Ce_y)O_3$. The former contributes to the high-k behavior, while the latter can induce a strong diffuse phase transition (DPT) in the vicinity of room temperature. Since both $(Ba_{1-x}La_x)Ti_{1-x/4}O_3$ and $(Ba_{1-x}Ce_x)Ti_{1-x/4}O_3$ ($x \le 0.05$) show a common feature of high-k first-order phase transition (FPT) [3-6], one holds certain expectations about a new high-k solid solution (Ba_{1-x}Ce_x)(Ti_{1-y-x/4}Ce_y)O₃ by means of the formation of solid solution of (Ba_{1-x}Ce_x)Ti_{1-x/4}O₃ and Ba(Ti_{1-y}Ce_y)O₃, i.e., an amphoteric feature of Ce³⁺ at Ba sites (Ce³⁺_{Ba}) and Ce⁴⁺ at Ti sites (Ce⁴⁺_{Ti}) is reflected in the Ce doping behavior. It was reported that the solid solubility of Ce in BaTiO₃ is 8% for Basite Ce³⁺ incorporation, whereas it is 35% for Ti-site Ce⁴⁺ incorporation [1,7]. The preference difference in the site occupation will hinder the formation of a single-phase ceramic. It seems surprising that Ce ions play a role in both high-k and DPT behaviors. This will inevitably cause the separation of other phases such as CeO₂, BaCeO₃ [1], or Ce-rich Ba(Ti,Ce)O₃ phases [8] in the main perovskite phase.

On the other hand, we are very curious about the dielectric response caused by the amphoteric $Ce_{Ba}^{3+}-Ce_{Ti}^{4+}$ ions in $BaTiO_3$ because the dielectric properties associated with the $R_{Ba}^{3+}-R_{Ti}^{4+}$ (where R is any element) double substitution in $BaTiO_3$ has never been reported to date.

In this work, the nominal $(Ba_{1-x}Ce_x)(Ti_{0.95-x/4}Ce_{0.05})O_3$ ceramics were prepared to seek a critical balance of the mixed valence of Ce^{3+}/Ce^{4+} . Fortunately, a single-phase ceramic can be formed only at x=0.03. The present communication reports

^{*}Corresponding author. Tel.: +86 13944220469. E-mail addresses: cninjp11232000@yahoo.com, dylu@jlict.edu.cn (D.-Y. Lu).

the structural and dielectric properties of this ceramic. It was found that an in-situ high-k diffuse phase transition occurred at the Curie point of BaTiO₃.

2. Experimental procedure

The starting materials were reagent-grade $BaCO_3$ (99.4%), TiO_2 (99.5%), and CeO_2 (99.9%). The ceramics were prepared according to the nominal formula ($Ba_{1-x}Ce_x$)($Ti_{0.95-x/4}Ce_{0.05}$) O_3 (x=0.01–0.05) using a mixed oxide method described elsewhere [2]. The final sintering conditions were chosen as 1450 °C for 24 h. Powder X-ray diffraction (XRD) measurements were made using a DX-2700 X-ray diffractometer (Dandong Haoyuan Inc.). Lattice parameters and unit cell volume were calculated by MS Modeling (Accelrys Inc.) using Cu K α 1 radiation (λ =1.540562 Å).

For single-phase $(Ba_{1-x}Ce_x)(Ti_{0.95-x/4}Ce_{0.05})O_3$ (x=0.03) ceramic (abbreviated BC3TC5), scanning electric microscope (SEM) images were obtained using a JSM-6490 SEM (JEOL) operated at 25 kV. Temperature dependences of the dielectric permittivity and loss were measured at 1 kHz using an RCL meter (Fluke PM6306). Raman spectra of ceramic powders were measured using a LabRAM XploRA Raman spectrometer (Horiba Jobin Yvon), with a 532 nm laser. A Linkam-600 heating and cooling stage was equipped for temperature-dependent Raman measurements. The electron paramagnetic resonance (EPR) spectrum was measured at an X band frequency of 9.84 GHz and at room temperature in the sweep range of 1500–5500 G using an EMX Plus spectrometer (Bruker). The gyromagnetic value (g) was calculated by the relationship $h\nu_0 = g\beta H$.

3. Results and discussion

XRD patterns of the nominal $(Ba_{1-x}Ce_x)(Ti_{0.95-x/4}Ce_{0.05})O_3$ ceramics are shown in Fig. 1(a). The main perovskite phase for all the samples has been formed, showing a pseudo-cubic structure. A small amount of CeO_2 and $BaCeO_3$ was separated out from the main perovskite phase when $x \le 0.02$, as clearly seen in Fig. 1(b) and (c). The Ce-rich perovskite phase of Ba

Fig. 1. XRD patterns of nominal $(Ba_{1-x}Ce_x)(Ti_{0.95-x/4}Ce_{0.05})O_3$ ceramics (a). The inset depicts variation in unit cell volume (V_0) , as a function of x. (b,c) Enlarged XRD peaks in the vicinity of 29° and 47° , respectively for observation of the formation of a single-phase ceramic (BC3TC5).

 $(Ti_{0.81}Ce_{0.19})O_3$ [8] appeared when $x \ge 0.04$. A complete solid solution called BC3TC5 was found to be formed at x=0.03. With an increase in x, the unit-cell volume (V_0) of the main perovskite phase increases linearly up to x=0.03 (Fig. 1 inset), indicating a consecutive incorporation of Ce⁴⁺ ions into Ti sites on the basis of an ionic size comparison (12-CN Ba²⁺: 1.61 Å, Ce^{3+} : 1.34 Å; 6-CN Ti^{4+} : 0.605 Å, Ce^{4+} : 0.87 Å [9]). The maximum value of V_0 appeared at x=0.03. Subsequently, a slower decrease in V_0 for $x \ge 0.03$ implies a decrease in the solubility of Ce^{4+} at Ti sites. Hence, the formula of $(Ba_{1-x}Ce_x)$ $(Ti_{0.95-x/4}Ce_{0.05})O_3$ is tenable just for x=0.03. Makovec et al. suggested that cerium is incorporated into the BaTiO₃ lattice at Ba sites as Ce³⁺ and at Ti sites as Ce⁴⁺ in the ratio of 4:3 when pure CeO₂ is added to BaTiO₃ [7]. The ratio of our singlephase sample with x=0.03 is 3:5. The difference between the two results arises from the differences in the Ba/Ti ratio and in the sintering temperature.

The V_0 value of BC3TC5 (66.08 Å³) is less than that of Ba (Ti_{0.95}Ce_{0.05})O₃ (66.37 Å³) [2], but greater than that of the cubic BaTiO₃ (65.50 Å³) (JCPDS Cards no. 31-174). This fact gives an evidence for the existence of the mixed valence of Basite Ce³⁺ and Ti-site Ce⁴⁺ in BC3TC5, i.e., the formation of Ce³⁺_{Ba}-Ce⁴⁺_{Ti} complexes.

Temperature-dependent Raman spectra of BC3TC5 are shown in Fig. 2. The two broad bands at 260 and 525 cm⁻¹, which persisted till 180 °C, are attributed to intrinsic disorder in the cubic phase of BC3TC5 [10]. The rapid attenuation of the 720 cm⁻¹ band at 180 °C implies an increase in cubicity. As with the Raman spectrum observed in $(Ba_{1-x}La_x)(Ti_{0.95-x/4}Ce_{0.05})O_3$ (x=0.03) ceramics (BL3TC5) [10], a weak 824 cm⁻¹ band, which was generally caused by trivalent rare-earth ions $(La^{3+}, Nd^{3+}, Eu^{3+})$ at Ba^{2+} sites in the BaTiO₃ lattice [11–13], also gives evidence for Ce^{3+} entering Ba sites in BC3TC5. However, the 824 cm⁻¹ band of BC3TC5 is much weaker

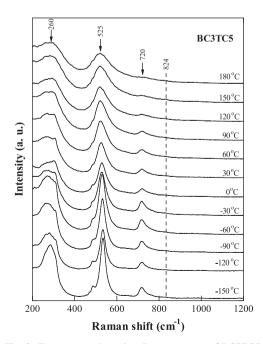


Fig. 2. Temperature-dependent Raman spectra of BC3TC5.

compared to BL3TC5 [10], which suggests that the Raman activity induced by Ba-site Ce^{3+} due to the formation of $Ce^{3+}_{Ba}-Ce^{4+}_{Ti}$ complexes is dramatically reduced.

EPR spectrum of BC3TC5 is shown in Fig. 3. A signal at g=2.003 was assigned to ionized Ti-vacancy defects (V_{Ti}) [10,14], which was caused by the substitution of Ce³⁺ at Ba²⁺ sites, in good agreement with the Raman scattering observations.

SEM image of BC3TC5 is shown in Fig. 4. BC3TC5 exhibited a non-homogeneous but denser microstructure consisting of coarse grains (3–6 μ m) and fine grains (~1 μ m). The average grain size is 2.7 μ m. The morphology of the other four samples with $x\neq0.03$ is the same as BC3TC5 (not presented here). The secondary phase that grew between three or four coarse grains boundaries can be observed when $x\geq0.04$.

Temperature dependence of the dielectric permittivity (ε') and loss (tan δ) for BC3TC5 is shown in Fig. 5. The ε' -T curves of BL3TC5 and BaTiO₃ are depicted in this figure for comparison [2]. BaTiO₃ showed a first-order phase transition and a sharp-peak feature at its Curie point ($T_{\rm C} \approx 125~{\rm ^{\circ}C}$). For BL3TC5, the so-called Curie temperature ($T_{\rm C}$) at which the maximum dielectric permittivity ($\varepsilon'_{\rm m}$) occurred decreased rapidly at a dramatic rate of $-30~{\rm ^{\circ}C/at\%}$ La [2]; therefore the dielectric peak of BL3TC5 could approach room temperature ($T_{\rm C}$ =38 ${\rm ^{\circ}C}$) when x was increased to 0.03. Similar to BL3TC5, BC3TC5 also exhibited a strong high-k diffuse phase transition (DPT) behavior ($\varepsilon'_{\rm m}$ =9470), which demonstrates that Ba-site Ce³⁺ ions in BC3TC5 are responsible for raising

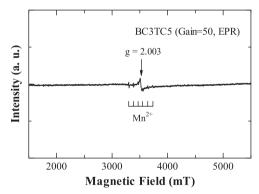


Fig. 3. EPR spectrum of BC3TC5.

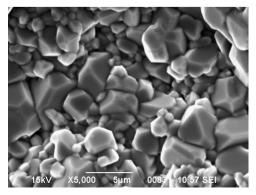


Fig. 4. SEM morphology of BC3TC5.

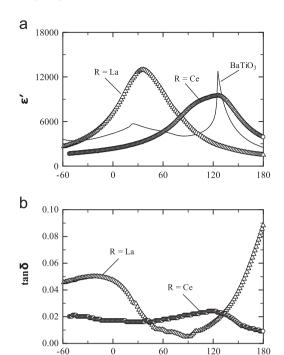


Fig. 5. Temperature dependence of (a) the dielectric permittivity (ϵ') and (b) the dielectric loss ($\tan \delta$) for BC3TC5 and BL3TC5. The data of BL3TC5 and BaTiO₃ are from Ref. [2].

 $T(^{0}C)$

the dielectric permittivity and Ti-site Ce⁴⁺ ions play a predominant role in the DPT behavior [2].

However, the $T_{\rm C}$ of BC3TC5 occurred at 125 °C. This fact indicates that the amphoteric Ce³⁺/Ce⁴⁺ ions make no contribution to a peak shift toward low temperature, and only induce an *in-situ* diffuse phase transition at the Curie point of BaTiO₃. The other four samples with $x\neq 0.03$ also exhibited high-k DPT behavior ($\varepsilon'_{\rm m} > 9000$) and their $T_{\rm C}$ occurred at 123–127 °C (not presented here). Thus, *in-situ* DPT is the common property of this series of ceramics.

At room temperature, BC3TC5 exhibits a cubic structure, which is not in contradiction with $T_{\rm C}$ observed at 125 °C. Because of the nature of DPT, BC3TC5 can retain an average cubic structure at lower temperatures far from $T_{\rm C}$, as observed for $({\rm Ba_{1-x}La_x})({\rm Ti_{0.95-x/4}Ce_{0.05}}){\rm O_3}$ (x=0.02) ($T_{\rm C}$ =64 °C) [2]. As far as phase structure is concerned, BC3TC5 with DPT is different from BaTiO₃ with first-order phase transition (FPT). The latter shows a very sharp dielectric peak at its $T_{\rm C}$, accompanied by a clear cubic–tetragonal phase transition. whereas the dielectric peak of the former (BC3TC5) becomes vague. In the case of DPT, the so-called $T_{\rm C}$, strictly speaking, cannot represent the cubic–tetragonal phase transition point, i.e., the Curie temperature. At present, $T_{\rm C}$ is often represented by the dielectric-peak temperature ($T_{\rm m}$).

A type of ions that can split into the two sites in BaTiO₃ occurs in very few cases. This type of ions is usually trivalent. They form a self-compensation (donor–acceptor) mode of $R_{Ba}^{3+}-R_{Ti}^{3+}$ in (Ba_{1-x}R_x)(Ti_{1-x}R_x)O₃ such as trivalent rare-earth ions R=Nd [15], Eu [13], and Er [16,17]. All of this type of ions can induce strong DPT, accompanied by a peak shift toward low temperature

[13,15,16]. The dual character of Ce^{3+}/Ce^{4+} in $BaTiO_3$ is the sole case of the $R_{Ba}^{3+}-R_{Ti}^{4+}$ (R is any element) double substitution to date. The mechanism of *in-situ* DPT of BC3TC5 is not known.

BC3TC5 exhibited lower dielectric loss (tan δ < 0.025). A stronger Mn²⁺ (3d⁵) sextet signal was observed (Fig. 3), which indicates that a large number of Mn⁴⁺ or Mn³⁺ impurities in BC3TC5 were reduced into Mn²⁺. There is almost no Mn²⁺ signal in the EPR spectrum of BL3TC5 [10]. Thus, the lower dielectric loss of BC3TC5 is attributed to the role of trapping electrons by Mn impurities.

4. Conclusions

The sole single-phase solid solution (BC3TC5) with x=0.03 can be prepared using a solid state reaction method according to the formula (Ba_{1-x}Ce_x)(Ti_{0.95-x/4}Ce_{0.05})O₃. BC3TC5 exhibits a cubic structure and a non-uniform microstructure. BC3TC5 with Ti-vacancy defects has a feature of mixed valence of Ba-site Ce³⁺ and Ti-site Ce⁴⁺ in the ratio of 3:5. A strong diffuse phase transition due to the amphoteric Ce³⁺/Ce⁴⁺ occurs at the Curie point of BaTiO₃ (T_C=125 °C). BC3TC5 shows a high-k behavior (ϵ' _m=9470) and low dielectric loss (tan δ < 0.025). The ability of trapping electrons by Mn impurities is responsible for the lower tan δ of BC3TC5.

Acknowledgments

This work was funded by National Natural Science Foundation of China (21271084), Projects of Jilin Provincial Science and Technology Department (20121825), and International Science and Technology Cooperation (20110710).

References

- [1] A. Chen, Y. Zhi, J. Zhi, P.M. Vilarinho, J.L. Baptista, Synthesis and characterization of Ba(Ti_{1-x}Ce_x)O₃ ceramics, Journal of the American Ceramic Society 17 (1997) 1217–1221.
- [2] D.-Y. Lu, M. Sugano, M. Toda, High-permittivity double rare earth-doped barium titanate ceramics with diffuse phase transition, Journal of the American Ceramic Society 89 (2006) 3112–3123.

- [3] F.D. Morrison, D.C. Sinclair, A.R. West, Electrical and structural characteristics of lanthanum-doped barium titanate ceramics, Journal of Applied Physics 86 (1999) 6355–6366.
- [4] D.F.K. Hennings, B. Schreinemacher, H. Schreinemacher, Highpermittivity dielectric ceramics with high endurance, Journal of the Eoropean Ceramic Society 13 (1994) 81–88.
- [5] J.H. Hwang, Y.H. Han, Dielectric properties of (Ba_{1-x}Ce_x)TiO₃, Japanese Journal of Applied Physics 39 (2000) 2701–2704.
- [6] J. Zhi, Y. Zhi, A. Chen, Crystalline structure and dielectric behavior of (Ce,Ba) TiO₃ ceramics, Journal of Materials Science 17 (2002) 2787–2793.
- [7] D. Makovec, Z. Samardzija, D. Kolar, Solid solubility of cerium in BaTiO₃, Journal of Solid State Chemistry 123 (1996) 30–38.
- [8] D.-Y. Lu, D.-D. Han, X.-Y. Sun, Mutual solid solubility and phase equilibrium in the system BaTiO₃–BaCeO₃, Japanese Journal of Applied Physics 51 (2012) 071501.
- [9] R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallographica A 32 (1976) 751–767.
- [10] D.-Y. Lu, X.-Y. Sun, M. Toda, A novel high-k 'Y5V' barium titanate ceramics co-doped with lanthanum and cerium, Journal of Physics and Chemistry of Solids 68 (2007) 650–664.
- [11] M. Kchikech, M. Maglione, Electron and lattice excitations in BaTiO₃– La, Journal of Physics: Condensed Matter 6 (1994) 10159–10170.
- [12] Z. Yao, H. Liu, Y. Liu, Z. Wu, Z. Shen, Y. Liu, M. Cao, Structure and dielectric behavior of Nd-doped BaTiO₃ perovskites, Materials Chemistry and Physics 109 (2008) 475–481.
- [13] D.-Y. Lu, T. Ogata, H. Unuma, X.-C. Li, N.-N. Li, X.-Y. Sun, Self-compensation characteristics of Eu ions in BaTiO₃, Solid State Ionics 201 (2011) 6–10.
- [14] T. Kolodiazhnyi, A. Petric, Analysis of point defects in polycrystalline BaTiO₃ by electron paramagnetic resonance, Journal of Physics and Chemistry of Solids 64 (2003) 953–960.
- [15] N. Hirose, J.M.S. Skakle, A.R. West, Doping mechanism and permittivity correlations in Nd-doped BaTiO₃, Journal of Electroceramics 3 (1999) 233–238.
- [16] J.H. Hwang, Y.H. Han, Dielectric properties of erbium doped barium titanate, Japanese Journal of Applied Physics 40 (2001) 676–679.
- [17] L.A. Xue, Y. Chen, R.J. Brook, The influence of ionic radii on the incorporation of trivalent dopants into BaTiO₃, Materials Science and Engineering B 1 (1998) 193–201.