

Available online at www.sciencedirect.com

SciVerse ScienceDirect

CERAMICSINTERNATIONAL

Ceramics International 39 (2013) S433-S436

www.elsevier.com/locate/ceramint

Effect of adding Y₂O₃ on structural and mechanical properties of Al₂O₃–ZrO₂ ceramics

A. Rittidech^{a,*}, R. Somrit^a, T. Tunkasiri^b

^aDepartment of Physics, Faculty of Science, Mahasarakham University, Mahasarakham 44150, Thailand ^bDepartment of Physics and Materials Science, Faculty of Science, Chiangmai University, Chiangmai 50200, Thailand

Available online 13 October 2012

Abstract

The effects of adding 1-8 wt% Y_2O_3 on phase formation and fracture toughness of Al_2O_3 – $xZrO_2$ – Y_2O_3 (AZY) ceramics were studied. Phase formations of the samples were characterized by the X-ray diffraction (XRD) technique. It was found that the major phase was rhombohedral- Al_2O_3 , while the minor phase consisted of the monoclinic- ZrO_2 , tetragonal- ZrO_2 and monoclinic- Y_2O_3 . It was found that Y_2O_3 contents did not clearly influence grain shape of AZY ceramics. The results obtained from the microhardness test could be used to evaluate the fracture toughness. It was found that the smaller grains had high fracture toughness. The maximum fracture toughness of 4.827 MPa m^{1/2} was obtained from 4 wt% Y_2O_3 . Refinement of lattice parameters using Rietveld analysis revealed the quantitative phases of AZY ceramics. This shows that under adding Y_2O_3 conditions the proportion of tetragonal- ZrO_2 phase plays an important role for the mechanical properties of AZY ceramics.

© 2012 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: D. Al₂O₃; D. ZrO₂; Phase formation

1. Introduction

Alumina (Al₂O₃) ceramics have been widely used for structural ceramics application [1]. The high strength and fracture toughness that make these ceramics attractive candidates for many demanding applications are the results of transformation toughening. In spite of the variety of useful physical properties of sintered oxide ceramics based on chemically and thermally stable alpha modification of alumina (α-Al₂O₃) their application as cutting tool inserts working under mechanical loads and thermal shock conditions is limited due to their brittleness and low strength. One of the methods to improve these properties is by making use of transformation strengthening process; through phase transformation some amount of ZrO₂ is introduced into Al₂O₃. The mechanism of this process is based on the polymorphic transformation of ZrO₂^(t) tetragonal phase into ZrO₂^(m) monoclinic phase during cooling from sintering temperature to room temperature, enabling an increase of the strength and/or fracture toughness of alumina ceramics [2]. The stoichiometry

*Corresponding author. Tel./fax: +66 43 754379.

E-mail address: au_wow@yahoo.com (A. Rittidech).

of alumina–zirconia is known to be an important factor for ensuring good mechanical properties. Therefore, the alumina–zirconia system (AZX with 15–50 mol% ZrO₂) is interesting to study [3,4]. It is well known that the tetragonal and/or cubic ZrO₂ can be retained to room temperature by doping small amount of stabilizing oxides (e.g. Y₂O₃, MgO, CaO and some rare-earth oxides) [5]. In addition, the metastable tetragonal zirconia without dopants can also be prepared in the form of fine particles that are smaller than the critical size [6–8].

During the present research powders of Al_2O_3 – $xZrO_2$ (x=35 mol%) were produced by coprecipitation of aluminum chloride and zirconium oxychoride. Co-precipitated products were doped to different Y_2O_3 ratios in order to optimize ceramics properties. The characteristics of different ceramic products were evaluated by X-ray diffraction (XRD), scanning electron microscopy (SEM), microhardness and phase analysis.

2. Experimental

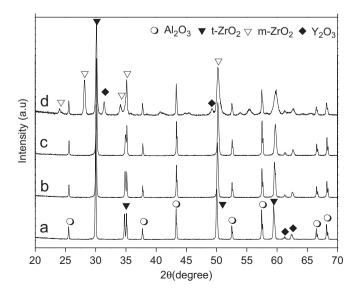
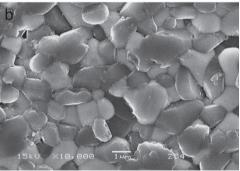
The Al_2O_3 – ZrO_2 powders with 35 mol% ZrO_2 were synthesized using $(AlCl_3 \cdot 6H_2O, 99.9\%$ pure), $(ZrOCl_2 \cdot 8H_2O, 99.9\%$ pure) and ammonia solution $(NH_4OH,$

28%) as raw materials. Aluminum chloride and zirconium oxychoride were mixed and dissolved in distilled water. The solution was thoroughly stirred at room temperature, and then precipitated by adding ammonia to get Zr(OH)₄ gel. The precipitate was washed repeatedly using distilled water to remove all the chloride ions (as tested by AgNO₃ solution), and then dried in air at 100 °C. Precursor powders were calcined at 1100 °C. Al₂O₃–ZrO₂ powders were added to Y₂O₃ (99.9% pure) with 1-8 wt% and this mixture was ball milled for 24 h. Sintering was done at 1600 °C for 2 h. The bulk densities of sintered sample were calculated using Archimedes's method. The phase compositions of Al₂O₃-ZrO₂-Y₂O₃ ceramics were measured by X-ray diffraction (XRD) using Cuka radiation (Philips PW 1729 diffractometer, Netherlands). Phase analysis was calculated using the Rietveld method. Microstructural evolution of the powders and ceramics were observed using the scanning electron microscopy: SEM (JEOL, JSM 840A, Japan). Microhardness of bulk ceramics was measured using a microscan Vickers and Knoop (FM-700etype D, Future Tech., Japan).

3. Results and discussion

The XRD patterns of Al_2O_3 –35 mol% ZrO_2 ceramics with added 2–8 wt% Y_2O_3 after sintering at 1600 °C for 2 h are shown in Fig. 1, which presents the difference of content phases.

Apart from α -Al₂O₃ and Y₂O₃, both t- and m-ZrO₂ are detected. The main reflections in the pattern formed around 2θ =25°, 30°, 35°, 43°, 50°, 57° and 59° match well with characteristic reflections of Al₂O₃-ZrO₂ [4,9]. The tetragonal phases of ZrO₂ are detected by the presence of high intensity peak at 2θ =30° and splitting of peaks at around 2θ =35° and 50°. It was found that at 2θ =50° it is clearly indicated that the t-ZrO₂ phase transformed

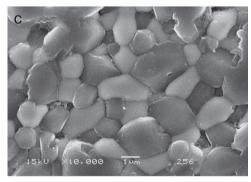

Fig.1. XRD patterns of Al_2O_3 -35 mol% ZrO_2 ceramics with added 2-8 wt% Y_2O_3 : (a) 2 wt%, (b) 4 wt%, (c) 6 wt% and (d) 8 wt%.

Table 1 Densities shrinkage and average grain size of Al_2O_3 –35 mol% ZrO_2 ceramics with different Y_2O_3 contents.

Contents of Y ₂ O ₃ (wt%)	Density (g/cm ³)	Shrinkage (%)	Average grain size (μm)
2	4.90	24.54	1.19
4	4.95	24.62	1.65
6	4.89	24.48	1.95
8	4.90	24.54	1.19

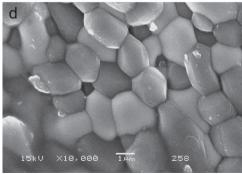


Fig. 2. SEM micrographs of the Al_2O_3 -35 mol% ZrO_2 ceramics with different Y_2O_3 : (a) 2 wt%, (b) 4 wt%, (c) 6 wt% and (d) 8 wt%.

completely to m-ZrO₂ phase with increasing Y_2O_3 . Many studies [1–4] showed that alumina could stabilize the cubic zirconia and the tetragonal zirconia if the Al_2O_3 – ZrO_2 -powders were prepared by the alkoxide route where the mixture of zirconium isopropoxide and aluminum isopropoxide was used, or by the aqueous coprecipitation route, starting with mixture of zirconium oxychloride and aluminum chloride.

Densities of the sintered samples were determined by using the Archimedes principle. Densities of between 4.87 g/cm³ and 4.95 g/cm³ were obtained. Table 1 contains the data on the densities and shrinkage of the Al₂O₃–35 mol% ZrO₂ ceramics with different Y₂O₃ contents. The maximum density was obtained in the samples of Al₂O₃-35 mol% ZrO₂ ceramics with 6 wt% Y2O3 added. Densities tend to increase with increasing concentrations of Y₂O₃. Moreover, linear shrinkage was shown to increase with Y₂O₃ contents, corresponding to densities. Fig. 2(a)-(d) shows the SEM micrograph of asreceived Al₂O₃–35 mol% ZrO₂ ceramics with different Y₂O₃ contents, indicating typical microstructures. The microstructure of the sintered Al₂O₃–35 mol% ZrO₂ with Y₂O₃ added is presented in Fig. 2, where the white and gray phases are ZrO₂ and Al₂O₃, respectively (as arrow). Microstructural characteristics were observed, i.e., uniformly sized grains with wellpacked and continuous grain structure. Almost no abnormal grain growth appeared. Supporting other work, the addition of ZrO₂ prevented the abnormal grain growth in alumina ceramics [10]. By applying the linear intercept method [11] to these SEM images, grain sizes were estimated for these samples as given in Table 1. It can be seen that Al₂O₃-35 mol% ZrO₂ ceramics with 2-4 wt% Y₂O₃ added exhibited average grain sizes range of $1.19-1.30\,\mu m$, while $Al_2O_3-35\,mol\%$ ZrO_2 ceramics with 6–8 wt% Y_2O_3 added exhibited average grain sizes range of $1.65-1.95\,\mu m$. Comparing with the grain sizes of $Al_2O_3-ZrO_2$ ceramics [12] and grain $Al_2O_3-35\,mol\%$ ZrO_2 ceramics with addition Y_2O_3 , it is found that the grain of $Al_2O_3-35\,mol\%$ ZrO_2 ceramics with addition of Y_2O_3 is smaller in size than grain sizes of $Al_2O_3-ZrO_2$ ceramics. Thus, the optimal content of Y_2O_3 is an important parameter for development of ceramic microstructures.

Corresponding EDX analysis and chemical compositions for some of these Al_2O_3 –35 mol% ZrO_2 ceramics with different Y_2O_3 contents are shown in Fig. 3 and Table 2. It is seen that the Y concentration increases with increasing Y_2O_3 contents. Compositions and mechanical property relationships of Al_2O_3 –35 mol% ZrO_2 ceramics with different Y_2O_3 contents were investigated.

Table 3 shows the relationship between the crystallographic data and mechanical properties of Al₂O₃– 35 mol% ZrO₂ ceramics with differentY₂O₃ contents.

Table 2 Chemical compositions of Al_2O_3 –35 mol% ZrO_2 ceramics with different Y_2O_3 contents from EDX.

Contents of Y ₂ O ₃ (wt%)	Composition (at%)					
	Al (K)	Zr (K)	Y (K)	O (K)		
2	36.02	17.12	1.62	50.69		
4	30.58	15.41	2.58	52.86		
6	29.15	17.54	4.15	46.50		
8	31.81	17.12	1.62	50.69		

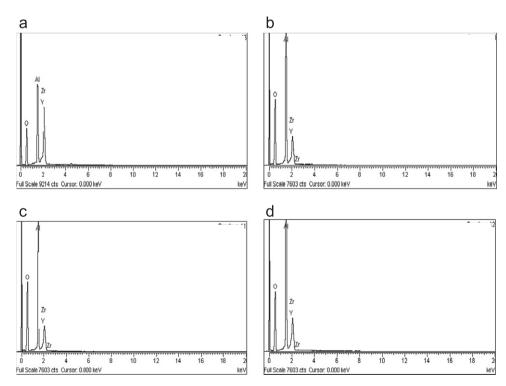


Fig. 3. EDX analyses of Al₂O₃-35 mol% ZrO₂ ceramics with various Y₂O₃ contents:(a) 2 wt%, (b) 4 wt%, (c) 6 wt% and (d) 8 wt%.

Table 3
Parameters obtained from Rietveld analysis and mechanical properties of Al₂O₃–35 mol% ZrO₂ ceramics as a function of different Y₂O₃ concentrations.

Contents of Y ₂ O ₃ (wt%)	Phase present	Lattice parameter			Phase	Hardness	Hardness	Fracture 1/2	
		a (nm)	b (nm)	c (nm)	β (deg.)	content (%)	HV (MPa)	Knoop (MPa)	toughness (MPa m ^{1/2})
2	α-Al ₂ O ₃	0.4058	0.4058	0.7091	98.10	68.4	11.30	10.83	2.53
	m-ZrO	0.5120	0.5040	0.5260		23.1			
	t - ZrO_2	0.3413	0.3413	0.3500		5.27			
4	α-Al ₂ O ₃	0.3759	0.3759	0.7503	96.10	64.4	12.51	16.28	4.87
	$m-ZrO_2$	0.5672	0.5218	0.5438		16.3			
	t-ZrO ₂	0.4038	0.4038	0.7401		15.4			
6	α -Al ₂ O ₃	0.4754	0.4754	0.7892	98.88	66.6	11.45	15.86	3.46
	m-ZrO ₂	0.5900	0.5742	0.5841		13.3			
	t - ZrO_2	0.5040	0.5040	0.5910		14.1			
8	α-Al ₂ O ₃	0.3756	0.3756	0.6092	98.00	64.6	10.46	16.08	3.52
	m-ZrO ₂	0.4010	0.4260	0.4020		18.1			
	t-ZrO ₂	0.4670	0.4670	0.5300		9.3			

The sample with 4 wt% Y₂O₃ added had high fraction of tetragonal phase; it was found that hardness increases with increasing Y₂O₃ concentration up to 4 wt% and it decreased with high contents of Y₂O₃ (6 and 8 wt%). Moreover, these results indicate that increase in hardness resulted from small grain size of Al₂O₃-35 mol% ZrO₂ ceramics with different Y₂O₃ contents. The optimal Y₂O₃ addition (4 wt%) inhibits grain growth of ceramics giving rise to homogeneous and dense ceramics. The fracture toughness of Al₂O₃-35 mol% ZrO₂ ceramics as a function of different Y₂O₃ concentrations is shown in Table 3. The toughness of all the compositions is higher than that of Al₂O₃–ZrO₂ ceramics. The highest value of fracture toughness is from Al₂O₃-35 mol% ZrO₂ ceramics with 4 wt% Y₂O₃ added, which corresponds to a high ratio of tetragonal phase as shown in Fig. 1 by XRD and an optimal microstructure.

4. Conclusions

The key parameter that controlled the phase formation, microstructure, and mechanical properties here would be the addition of Y_2O_3 . Al_2O_3 –35 mol% ZrO_2 ceramics with 4 wt% Y_2O_3 added have the average grain size of 1.19 μ m which showed the highest microhardness and fracture toughness. The samples had phase compositions of α -alumina combined with tetragonal zirconia phase and Y_2O_3 phase.

Acknowledgments

This work was supported by the Thailand Research Fund (TRF), the Commission on Higher Education (CHE) and Faculty of Science, Mahasarakham University (MSU), Thailand. The authors are grateful for financial support by Faculty of Science (MSU) to AMEC-8.

References

- P.G. Rao, M. Iwasa, T. Tanaka, I. Kondoh, T. Inone, Preparation and mechanical properties of Al₂O₃–15 wt% ZrO₂ composites, Scripta Materialia 48 (2003) 437–441.
- [2] B. Smuk, M. Szutkowska, J. Walter, Alumina ceramics with partially stabilized zicrconia for cutting tools, Journal of Materials Processing Technology 133 (2003) 195–198.
- [3] J.S. Hong, S.D. De la Torre, K. Miyamoto, L. Gao, Crystallization of Al₂O₃/ZrO₂ solid solution powders prepared by coprecipitation, Materials Letters 37 (1998) 6–9.
- [4] P.G. Rao, M. Iwasa, J. Wu, J. Ye, Y. Wang, Effect of Al₂O₃ addition on ZrO₂ phase composition in the Al₂O₃/ZrO₂ system, Ceramics International 30 (2004) 923–926.
- [5] R.H.J. Hannink, P.M. Kelly, B.C. Muddle, Transformation toughening in zirconia-containing ceramics, Journal of the American Ceramic Society 83 (3) (2000) 461–487.
- [6] R.C. Garvie, The occurrence of metastable tetragonal zirconia as a crystallite size effect, The Journal of Physical Chemistry 69 (4) (1965) 1238–1243.
- [7] T. Mitsuhashi, M. Ichihara, U. Tatsuke, Characterization and stabilization of metastable tetragonal ZrO₂, Journal of the American Ceramic Society 57 (2) (1974) 97–101.
- [8] B. Kerkwijk, L. Winnubst, E.J. Mulder, H. Verweij, Processing of homogeneous zirconia-toughened alumina ceramics with high drysliding wear resistance, Journal of the American Ceramic Society 82 (8) (1999) 2087–2093.
- [9] I. Mobasherpour, M. Solati Hashjin, S.S. Razavi Toosi, R. Darvishi Kamachali, Effect of the addition Al₂O₃–ZrO₂ on nanocrystalline hydroxyapatite bending strength and fracture toughness, Ceramics International 35 (2009) 1569–1574.
- [10] W. Hsing, J.R. Chen, C.J. Ho, Critical zirconia amount to enhance the strength of alumina, Ceramics International 34 (2008) 2129–2135.
- [11] W.E. Lee, W.M. Rainforth, Ceramic Microstructures Property Control by Processing, Chapman & Hall, London, 1994.
- [12] A Rittidech, T. Tunkasiri, Preparation and characterization of Al₂O₃ 25 mol% ZrO₂ composites, Ceramics International 38s (2012) s125–s129.