

Available online at www.sciencedirect.com

SciVerse ScienceDirect

CERAMICSINTERNATIONAL

Ceramics International 39 (2013) S575-S578

www.elsevier.com/locate/ceramint

Preparation of delafossite CuFeO₂ coral-like powder using a self-combustion glycine nitrate process

Te-Wei Chiu*, Ping-Shuo Huang

Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 106, Taiwan

Available online 22 October 2012

Abstract

This study employed a glycine nitrate process to prepare porous, stoichiometric, homogeneous $CuFeO_2$ powders without post-annealing treatment or ambient control. In this method, a precursor solution was prepared by mixing glycine with an aqueous solution of blended (Cu-Fe) metal–nitrates in their stoichiometric ratios. The glycine-mixed precursor solution was first heated in a beaker to evaporate excess water and form a viscous, bluish, and semi-transparent gel. The beaker was then covered with a metallic mesh, and the temperature increased slowly to $250\,^{\circ}C$ to auto-ignite the material. The combustion was self-sustaining and extremely rapid, producing gray powders. The powders showed a large surface area of $11.38\,\text{m}^2/\text{g}$, as determined according to BET surface area measurements. SEM observations of these powders confirmed their coral-like traits and porous structures.

Keywords: A. Powders: Chemical preparation; B. Porosity; C. Chemical properties; D. Transition metal oxides

1. Introduction

CuFeO₂ is a delafossite-type compound that has attracted much attention as a p-type transparent conductive oxide (TCO) used for several applications such as transparent diodes and solar cells [1–3]. Related studies on delafossite oxides are interested not only in examining the TCO properties but also in exploring their applications as photo catalysts for hydrogen evolution [4], removal of divalent metal ions [5], reduction of cadmium [6], magnetics [7], and thermoelectric devices [8].

One method for improving the catalysis efficiency is to decrease the size of the catalyst to increase the surface area and adsorption ability. Synthesizing $CuFeO_2$ powder can therefore be expected to improve the performance of catalytic applications, and controlling the valence state of Cu to 1+ and Fe to 3+ is the key to synthesize $CuFeO_2$ successfully. According to the phase diagram of the bulk Fe-Cu-O ternary system reported by Eatkov et al. [9], when CuO and Fe_2O_3 react in air, CuO and Fe_2O_3 favorably react to form spinel-type $CuFe_2O_4$ at $700\,^{\circ}C$.

E-mail address: tewei@ntut.edu.tw (T.-W. Chiu).

Pure delafossite-type $CuFeO_2$ is converted from spinel-type $CuFe_2O_4$ with residual CuO above 900 °C. The chemical formulae are shown in (1) and (2):

$$2CuO + Fe_2O_3 \rightarrow CuFe_2O_4 + CuO \tag{1}$$

$$CuFe2O4 + CuO \rightarrow CuFeO2 + 1/2O2$$
 (2)

CuFeO₂ powder with a high surface area is difficult to prepare using solid state reactions and the traditional Pechini method. Using these methods to synthesize CuFeO₂ powder requires not only high-temperature heat treatment (as high as 900 °C) but also a noble-gas ambient. During high-temperature treatment, the spinel-type CuFe₂O₄ forms at approximately 700 °C and sinters into large-grain material before the CuFe₂O₄ reacts with residual CuO and releases O₂ to form CuFeO₂ at higher than 900 °C under an N₂ gas ambient. Synthesizing CuFeO₂ powder requires intermediate regrinding during calcination in an oxygen-free atmosphere, such as nitrogen gas [10].

Although the glycine nitrate process (GNP) is widely applied in synthesizing homogeneous, single, binary, and multicomponent oxide systems, it has not been employed to synthesize copper–iron solid solutions. Therefore, the goal of this investigation is to determine the utility and

^{*}Corresponding author. Tel.: +886 2771 2171x2742; fax: +886 2 2731 7185.

usefulness of GNP in producing CuFeO₂ powders with a high surface area. CuFeO₂, with a typical composition and a delafossite structure, was used in this study. This paper presents a discussion on the synthesis results and characterization of CuFeO₂ powders.

2. Experimental

2.1. Synthesis of CuFeO₂ powders

To compare the characteristics of $CuFeO_2$ powder prepared using a GNP method to those of traditionally prepared $CuFeO_2$ powder, $CuFeO_2$ powder was also prepared using a traditional solid state reaction method, in which Cu_2O and Fe_2O_3 commercial powders are mixed in stoichiometric quantities with ethanol in a plastic jar containing zirconia balls and milled for 24 h. In this study, the resulting slurries were dried at 70 °C in an oven, and the dried powders were treated in a N_2 atmosphere at 900 °C for 12 h.

2.2. GNP method

To synthesize $CuFeO_2$ powders using the GNP method, copper nitrate $[Cu(NO_3)_2 \cdot 3H_2O]$, iron nitrate $[Fe(NO_3)_3 \cdot 9H_2O]$, and glycine were used as starting reagents. The molar ratio of copper nitrate to chromium nitrate was fixed at 1:1, whereas various glycine to nitrate molar ratios of 1:1.4 and 1:1.9 were used. After stirring at 80 °C for 2 h, the precursor solution was heated to 100 °C to evaporate the water, causing the solution to become dry for 24 h, after which a transparent moisture-sensitive glassy material was obtained. This glassy material was then heated in the beaker on a hot plate to raise the temperature to approximately 200 °C. The material ignited spontaneously, resulting in a gray mass. During ignition, the beaker was covered with a fine-mesh sieve to prevent the powder from discharging from the beaker.

2.3. Physico-chemical characterization

The $CuFeO_2$ powders were characterized using various techniques: X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermal gravity analysis (TGA), and BET surface area measurement. The crystalline phase analysis of the as-dried powders was performed using XRD (Rigaku DMAX2200) with $Cu K\alpha$ radiation. The crystalline phase was determined using Raman spectroscopy (Dong Woo 500i). The SEM (HITACHI S-4700) technique was used to determine the morphology and characteristics of the agglomerates in the as-dried powders. The thermal behaviors of $CuFeO_2$ powder in air and nitrogen (3 N) flow were investigated using TGA. The standard BET (Micromeritics Gemini V) method was applied to measure the surface area.

3. Results and discussion

Although previous studies have reported that the GNP method is capable of producing single, binary, and multicomponent oxides with more favorable homogeneity, the method has not previously been used to synthesize CuFeO₂ powders. Therefore, the aim of this investigation was to determine the utility of this method in synthesizing solidsolution CuFeO₂ powders and to study the characteristics of the powders obtained by using this method. CuFeO₂ with a typical composition was used because of its many applications, as described in Section 1. However, Cu ions and Fe ions tend to easily form spinel-type CuFe₂O₄, whose stability is up to 1200 °C. Normally, for the synthesis of CuFeO₂ the reduced ambient such as nitrogen atmosphere was required. This makes it difficult to obtain delafossite-type CuFeO₂, thus hindering the synthesis of delafossite-phase compounds in air using the GNP method. Therefore, the fuel/cation ratio is a critical factor in synthesizing CuFeO₂ using the GNP method.

Fig. 1 presents the XRD patterns of the CuFeO₂ powders prepared using solid state reaction and the GNP method with various GN ratios. The XRD patterns of the Cu–Fe–O powders prepared using the GNP method with GN=1.4–1.9 show main reflections of a typical delafossite structure of CuFeO₂, corresponding respectively to the [006] and [110] planes and indicating that the main compound of the powder prepared using the GNP method

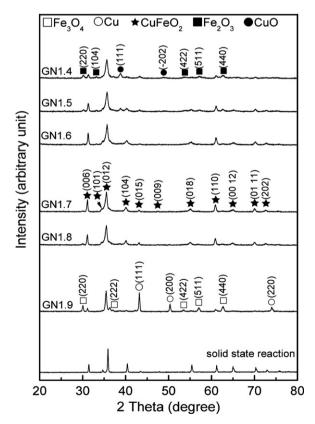


Fig. 1. XRD patterns of CuFeO₂ powder prepared using GNP method with various GN ratio and solid state reaction.

is delafossite CuFeO₂. However, the GN ratio is less than 1.5 the second phases of CuO and Fe₂O₃ were observed. When the GN ratio was larger than 1.8, the second phases of Cu and Fe₃O₄ were observed. As mentioned in Section 1, the most crucial step in synthesizing delafossite-type CuFeO₂ powder is controlling the valence state of Cu to 1+ and Fe to 3+ and the amount of glycine controlled the partially reduction atmosphere at its combustion. When the GN ratio was less than 1.6, the Cu 2+ to 1+ could not com be reduced completely due to lack of glycine and obtain the second phase of CuO. Conversely, too much glycine made the reduction atmosphere too strong and made Cu ions and Fe ions were over reduced to Cu 0 and Fe 2+, respectively. As shown in the XRD chart, even the process window is extremely narrow. The pure-phase CuFeO₂ powder was successfully synthesized using the GNP method (GN=1.7) without additional heat treatment or ambient control.

The structure of the as-self combusted CuFeO₂ powder was further confirmed using Raman spectroscopy. The Raman spectra of both CuFeO₂ powders, prepared using GNP and solid state reaction, show two main peaks of a delafossite structure of CuFeO₂, corresponding to 338 cm⁻¹ and 687 cm⁻¹ (Fig. 2). The peak at 478 cm⁻¹ is attributed to plasma. The Raman spectroscopy results are consistent with those of relevant literature [11].

Fig. 3 shows an SEM photograph of the CuFeO₂ powder prepared using the GNP method and solid state reaction. The as-combusted CuFeO₂ powder prepared using the GNP method exhibited a porous structure with a coral-like shape. By contrast, the CuFeO₂ powder prepared using solid state reaction shows sintered large grain. SEM observations of the as-prepared GNP material showed a macroporous microstructure of the material. The crystalline size of the CuFeO₂ nanograin was approximately 32 nm, as calculated using Scherrer's equation.

Table 1 lists the BET surface areas of the CuFeO₂ prepared using solid state reaction and the GNP method. BET surface area measurements revealed a surface area of

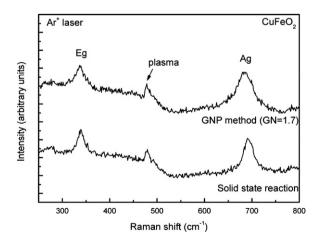
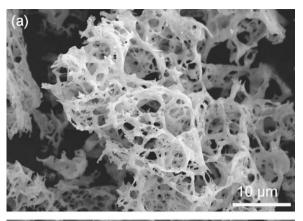



Fig. 2. Raman spectra of CuFeO₂ prepared using GNP method and solid state reaction measured at room temperature.

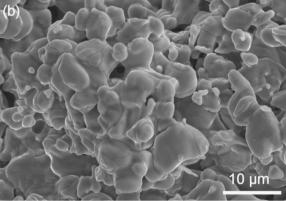


Fig. 3. SEM images of $CuFeO_2$ powder prepared using (a) GNP method (GN=1.7) and (b) solid state reaction.

Table 1 BET surface area of CuFeO₂ powder.

Preparation method	Surface area (m ² /g)	[Ref]
Solid state reaction GNP	0.045 11.38	This study This study
Solid state reaction with grinding	0.57	[10]

 $11.38 \text{ m}^2/\text{g}$ for the as-self combusted CuFeO₂ powder. This is nearly 20 times larger than that of the CuFeO₂ powder prepared using solid state reaction with intermittent grindings (0.57 m²/g).

The thermal behavior of the CuFeO₂ GNP powders was examined using TGA in air and N₂ flow, and the compound was confirmed using XRD. As shown in Fig. 4. Both TGA curves measured in air and N₂ flow show weight loss before 200 °C, indicating that the desorption of water and weight increased after 400 °C in air and after 500 °C in N₂ flow. Based on the XRD patterns shown in Fig. 5, O₂ was intercalated into CuFeO₂ to form CuFe₂O₄ and CuO, even at a lower O₂ partial pressure in 3 N N₂ flow. In N₂ flow, the CuFeO₂ powder shows reversibility of a delafossite-to-spinel phase transition at 500 °C and a spinel-to-delafossite phase transition at 800 °C. However, in air, the delafossite-to-spinel phase transition did not occur. This phenomenon is consistent



Fig. 4. TGA analysis of CuFeO₂ GNP powder in air and N₂ flow.

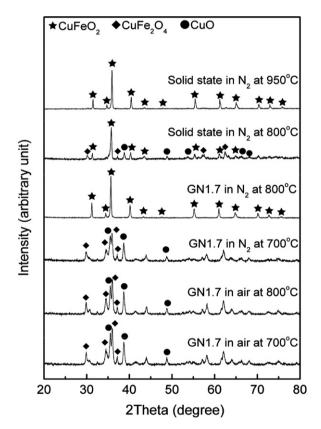


Fig. 5. XRD patterns of CuFeO_2 powder prepared using GNP and solid state reaction post-heat treatment at various temperatures in air and N_2 flow.

with Lalanne [10] and shows the reason why CuFeO₂ cannot synthesize in air. However, we demonstrated that CuFeO₂ power could be prepared in air without further heat treatment using the GNP method.

Therefore, all of these characterization results confirm that the GNP method creates macroporous, stoichiometric, homogeneous CuFeO₂ powders. An additional study to control the pore structure by varying the preparation parameters during GNP synthesis, as well as to

understand the role of glycine in producing a porous microstructure, is currently underway. Furthermore, the catalytic efficiency of nanosized CuFeO₂ powder will also be investigated.

4. Conclusion

This study successfully employed the GNP method to obtain porous, homogeneous, stoichiometric $CuFeO_2$ powders. The powders show a coral-like structure. The crystalline structure was confirmed using an X-ray diffractometer and Raman spectroscopy. BET surface area measurements showed that the pore structure has a surface area of $11.38 \, \text{m}^2/\text{g}$.

Acknowledgments

This work was supported by the National Science Council (NSC-98–2218-E-027-004) and Much Fortune Technology Co., Ltd., Taiwan.

References

- [1] A. Barnabé, E. Mugnier, L. Presmanes, Ph. Tailhades, Preparation of delafossite CuFeO₂ thin films by rf-sputtering on conventional glass substrate, Materials Letters 60 (2006) 3468–3470.
- [2] Hong-Ying Chen, Jia-Hao Wu, Transparent conductive CuFeO₂ thin films prepared by sol-gel processing, Applied Surface Science 258 (2012) 4844–4847.
- [3] E. Mugnier, A. Barnabé, L. Presmanes, Ph. Tailhades, Thin films preparation by rf-sputtering of copper/iron ceramic targets with Cu/Fe=1: from nanocomposites to delafossite compounds, Thin Solid Films 516 (2008) 1453–1456.
- [4] A. Derbal, S. Omeiri, A. Bouguelia, M. Trari, Characterization of new heterosystem CuFeO₂/SnO₂ application to visible-light induced hydrogen evolution, International Journal of Hydrogen Energy 33 (2008) 4274–4282.
- [5] S. Omeiri, Y. Gabe's, A. Bouguelia, M. Trari, Photoelectrochemical characterization of the delafossite CuFeO₂: application to removal of divalent metals ions, Journal of Electroanalytical Chemistry 614 (2008) 31–40.
- [6] S. Bassaid, M. Chaib, S. Omeiri, A. Bouguelia, M. Trari, Photocatalytic reduction of cadmium over CuFeO₂ synthesized by sol-gel, Journal of Photochemistry and Photobiology A: Chemistry 201 (2009) 62–68.
- [7] G. Quirion, M.L. Plumer, O.A. Petrenko, G. Balakrishnan, C. Proust, Magnetic phase diagram of magnetoelectric CuFeO₂ in high magnetic fields, Physical Review B 80 (2009) 064420–064425.
- [8] T. Nozaki, K. Hayashi, T. Kajitani, Mn-substitution effect on thermal conductivity of delafossite-type oxide CuFeO₂, Journal of Electronic Materials 39 (2010) 1798–1802.
- [9] A.E. Katkov, A.A. Lykasov, Spinel phase relations in the Fe₃O₄– CuFe₂O₄ system, Inorganic Materials 39 (2003) 171–174.
- [10] O. Aktas, K.D. Truong, T. Otani, G. Balakrishnan, M.J. Clouter, T. Kimura, G. Quirion, Raman scattering study of delafossite magnetoelectric multiferroic compounds: CuFeO₂ and CuCrO₂, Journal of Physics: Condensed Matter 24 (2012) 036003.
- [11] M. Lalanne, A. Barnabé, F. Mathieu, Ph. Tailhades, Synthesis and thermostructural studies of a $CuFe_{1-x}Cr_xO_2$ delafossite solid solution with $0 \le x \le 1$, Inorganic Chemistry 48 (2009) 6065–6071.