

Available online at www.sciencedirect.com

SciVerse ScienceDirect

CERAMICSINTERNATIONAL

Ceramics International 39 (2013) S623-S626

www.elsevier.com/locate/ceramint

Luminescent properties of CaAl₄O₇ powders doped with Mn⁴⁺ ions

Jungkyu Park, Gunha Kim, Young Jin Kim*

Department of Materials Science and Engineering, Kyonggi University, Suwon 443-760, Republic of Korea

Available online 17 October 2012

Abstract

In this work, the effects of firing conditions, the Mn concentration, and a flux on the structural and luminescent properties of Mn^{4+} ion doped $CaAl_4O_7$ (CA_2) powders were investigated. The photoluminescence excitation spectra of $CA_2:Mn^{4+}$ powders exhibited a broad band, covering from around 320 to 400 nm. Four red emission bands were observed at around 644, 656, 666, and 671 nm, while the 656 nm emission was observed as the strongest one. $CA_2:Mn^{4+}$ was believed to be a good candidate as a red phosphor for white light emitting diodes (LEDs) using near ultraviolet chips.

© 2012 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: A. Powders: solid state reaction; C. Optical properties; D. Alkaline earth oxides; Calcium aluminates

1. Introduction

Aluminate compounds have been recognized as excellent host materials for phosphors because of their high luminescent efficiency, chemical stability, and durability. Accordingly, rareearth ions doped calcium and strontium aluminates have been widely investigated [1–4]. Park et al. suggested that various phases such as CaAl₂O₄ (CA), CaAl₄O₇ (CA₂), Ca₃Al₂O₆, and Ca₁₂Al₁₄O₃₃ could be achieved, depending on the ratios of CaO to Al₂O₃, while the CA:Eu²⁺ phase dominantly contributed to a strong blue emission at 440 nm with an excitation wavelength of 330 nm [3].

Mn⁴⁺ doped CaAl₁₂O₁₉ (CA₆) is well known as a red phosphor that can be excited by near ultraviolet light [5–9]. Meanwhile, CA₂ can be a good host crystal for phosphors, because it also has some merits as the other aluminates do. CA₂ has a monoclinic structure (a=1.289 nm, b=0.889 nm, c=0.544 nm, and β =106.93°) [10,11]. It was suggested that Tb³⁺/Ce³⁺ and Eu³⁺ ions doped CA₂ exhibited green and red emissions, respectively [12,13]. However, CA₂ doped with Mn⁴⁺ ions has not been reported yet.

Therefore, in this work Mn⁴⁺ doped CA₂ powders were prepared by a solid-state reaction method and their optical properties were systematically investigated.

2. Experiment

CA₂:Mn⁴⁺ powders were prepared by a solid-state reaction method using CaCO₃ (High Purity Chemicals, 99.99%), Al₂O₃ (High Purity Chemicals, 99.99%), and MnCO₃ (Aldrich, 99.99%). H₃BO₃ (Aldrich, 99.99%) was used as a flux to promote the reaction between elements. The stoichiometric mixtures were ball-milled for 24 h and fired at 1200–1500 °C for 3 h under N₂ (30 sccm) atmosphere. A flux was added into the mixtures at 0–15 wt%.

The crystal structure was determined by an X-ray diffractometer (XRD, Rigaku, Miniflex II) using Cu K_{α} radiation (λ =1.5406 Å). The scanning angle (2 θ) and speed were 20°-70° and 5°/min, respectively. The particle size and morphology were observed by a field-emission scanning electron microscope (FE-SEM, JEOL, JSM-6700F). The photoluminescence (PL) spectra were measured by a PL system (PSI, Darsa-5000) with a 500 W xenon lamp as an excitation light source.

3. Results and discussion

CA₂:0.01Mn⁴⁺ powders were prepared at various temperatures with 5 wt% H₃BO₃, and their XRD patterns are shown in Fig. 1. CA₂ was attained as a dominant phase at 1200 °C, while un-reacted Al₂O₃ weakly appeared. On the other hand, very weak CA₆ peaks as well as CA₂ peaks were apparently observed at 1300 °C and more. According

^{*}Corresponding author. Tel.: +82 31 249 9766; fax: +82 31 244 6300. *E-mail address:* yjkim@kyonggi.ac.kr (Y.J. Kim).

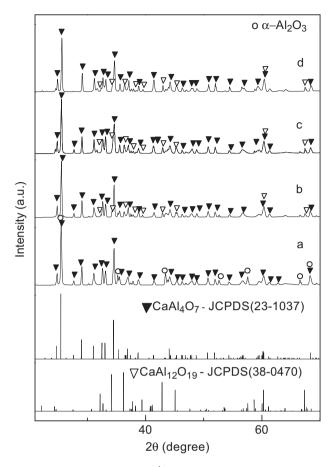


Fig. 1. XRD patterns of CA₂:Mn⁴⁺ prepared at various firing temperatures: (a) 1200 °C, (b) 1300 °C, (c) 1400 °C, and (d) 1500 °C.

to the phase diagram of the $CaO-Al_2O_3$ system [14], CA_2+CA_6 or CA_2+CA can be produced, if the composition deviates from the stoichiometric CA_2 composition at above 1200 °C.

The PL excitation (PLE) and PL spectra of CA₂:Mn⁴⁺ prepared at various firing temperatures are shown in Fig. 2. The PLE spectra at 1300 and 1400 °C are composed of two strong and a weak peaks at around 335, 380, and 467 nm, respectively, which are assigned to ${}^4A_2 \rightarrow {}^4T_1$, 4T_2 transitions of Mn⁴⁺ ions [6–11]. On the other hand, they are insignificant at 1200 and 1500 °C. The corresponding PL spectra show emission peaks at around 643, 656, 666, and 670 nm due to the 2E , ${}^2T_1 \rightarrow {}^4A_2$ transitions of Mn⁴⁺ ions, while the 656 nm emission appears as the strongest one. These PLE and PL spectra profiles coincided with those of the previous works on CA₆:Mn⁴⁺ [6–11], indicating that manganese ions were incorporated into CA2 lattices as Mn⁴⁺ ions. It was suggested that Mn⁴⁺ ions in CA₆ were substituted for Al³⁺ ions coordinated by six oxygen atoms, leading to red emission peaks at around 600-700 nm. Mn⁴⁺ (r=0.054 nm) ions can readily replace Al^{3+} (r=0.053 nm) ions because of the similarity in size, whereas they are unlikely to be substituted for larger Ca²⁺ (r=0.134 nm, CN=12) ions [8]. Meanwhile, since all transitions from the ground state to every excited energy

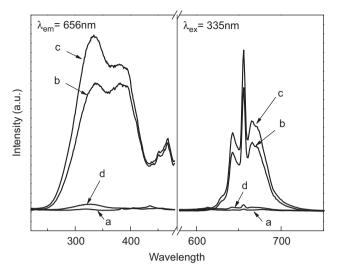


Fig. 2. PLE (left) and PL (right) spectra of CA₂:Mn⁴⁺ with various firing temperatures. (a) 1200 °C, (b) 1300 °C, (c) 1400 °C, and (d) 1500 °C.

level of Mn^{2+} (d⁵) are spin-forbidden, Mn^{2+} doped phosphor body colour is white due to the weak optical absorption intensity [15].

On the other hand, the colour of the obtained powders in this work were pink, because strong absorption bands, which were assigned to the ${}^{4}A_{2} \rightarrow {}^{4}T_{1}$, ${}^{4}T_{2}$ spin-allowed transitions of Mn⁴⁺ ions, were attained in the visible to near UV region. Additionally, if Mn2+ ions exist, a narrow absorption band at around 425 nm due to ${}^{6}A_{1} \rightarrow {}^{4}A_{1}$, ${}^{4}E$ should be observed, but not appear. Accordingly, the comparison with previous works leads to the speculation that Mn⁴⁺ ions were possibly substituted for Al³⁺ ions of CA₂. On the other hand, Ce³⁺, Tb³⁺, and Eu³⁺ ions were presumed to replace Ca²⁺ ions in CA₂, because the difference in size was small. The CA₆:Mn⁴⁺ phase could also generate the red emission, but its contribution on the emission was thought to be negligible because of its very small amount in samples. CA₂:Mn⁴⁺ at 1200 °C was not luminescent, because this low temperature was not enough to activate Mn4+ ions. The higher temperatures of 1300 and 1400 °C enhanced the incorporation and activation (oxidation) of Mn⁴⁺ ions in the host, leading to the drastic increase in the PL intensity. However, CA₂:Mn⁴⁺ at 1500 °C exhibited very low emission intensity, even though its crystallinity was almost the same with those at 1300–1400 °C. However, the reasons for this behaviour are unclear at this stage.

The variation of the PL intensity of $CA_2:xMn^{4+}$ as a function of the Mn concentration is depicted in Fig. 3. With increasing Mn content (x) from 0.1 to 0.3 mol%, the PL intensity increased, and then it continuously decreased at 0.5 mol% and more. This decrease in the PL intensity was attributed to the structural defects and a concentration quenching effect. By substituting Mn⁴⁺ ions for Al^{3+} ions, positive Mn^{4} defects might be produced, resulting in the creation of negative defects such as $V_{Ca''}$ for charge compensation. These charged defects,

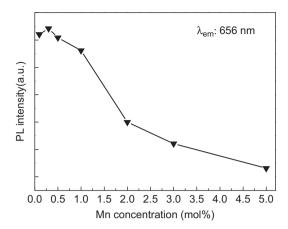


Fig. 3. The variation of the PL intensity of $CA_2:Mn^{4+}$ as a function of the Mn concentration. (Prepared at 1400 °C).

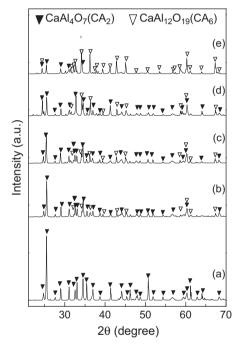
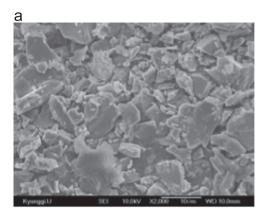


Fig. 4. XRD patterns of samples prepared with various H_3BO_3 amounts. (a) 0 wt%, (b) 5 wt%, (c) 7 wt%, (d) 10 wt%, and (e) 15 wt% (0.003Mn⁴⁺).

which act as luminescent killers, increase with the increase in x values, reducing the emission intensity. Kang et al. suggested that the strongest emission intensity was achieved for 2 mol% Mn^{4+} ions doped CA_6 powders due to the lowest chemical complexity and structural heterogeneity [9].

The effects of the amount of H_3BO_3 on the phase transition are shown in Fig. 4. When the samples were prepared at 1400 °C without a flux, the pure CA_2 phase was obtained. On the other hand, with increasing the amount of H_3BO_3 , the CA_2 phase gradually decreased, whereas the CA_6 phase increased and finally became a dominant phase at 15 wt%. The addition of H_3BO_3 was thought to be favorable to the formation of the CA_6 phase rather than the CA_2 phase. It was reported that fluorides

such as MgF₂ and CaF₂ were very effective for the synthesis of the CA₆ phase [5,6]. The addition of AlF₃ was performed in this work, but it was not effective compared with above fluorides.


Fig. 5 exhibits the variation of the PL intensity of samples prepared with various H₃BO₃ amounts. The emission intensity continuously increased with the increase in the amount of H₃BO₃ up to 10 wt%, and then rather decreased at 15 wt%. As described in Fig. 4, the phase transition from CA2 to CA6 is observed with the amount of H₃BO₃, while both CA₂:Mn⁴⁺ and CA₆:Mn⁴⁺ can generate the same red emission due to Mn⁴⁺ ions. Therefore, it may be presumed that the red emission is mainly ascribed to the CA₆:Mn⁴⁺ phase. However, this speculation is not sure, because the PL intensity decreases at 15 wt% despite the increase in the amount of the CA₆:Mn⁴⁺ phase. Conclusively, both the CA₂:Mn⁴⁺ and CA₆:Mn⁴⁺ phases were responsible for red emissions, but it was uncertain which one was predominant at various amounts of H₃BO₃. Another possible effect is the increase in the grain size. As shown in Fig. 6, the grain size largely developed at 15 wt% compared with 5 wt%. Murata et al. also suggested that the enlarged particle size of CA₆:Mn⁴⁺ was observed by the addition of a flux, CaF2, resulting in the increase in the PL intensity [5].

4. Conclusion

The structural and luminescent properties of CA₂:Mn⁴⁺ powders were closely correlated with firing temperatures, Mn concentrations, and a flux. CA₂:Mn⁴⁺ was obtained as a dominant phase at 1300–1500 °C, while the CA₆:Mn⁴⁺ phase weakly appeared as a minor phase. The PLE spectra of CA₂:Mn⁴⁺ powders exhibited broad bands, ranging from around 320 to 400 nm. Four emission peaks were observed in the red region, and the strongest one appeared at 656 nm. The emission intensity was continuously enhanced with increasing firing temperatures up to 1400 °C, but it was insignificant at the high temperature of 1500 C. The addition of H₃BO₃ caused the phase transition from CA₂ to CA₆, and

Fig. 5. The variation of the PL intensity of samples prepared with various H_3BO_3 amounts.

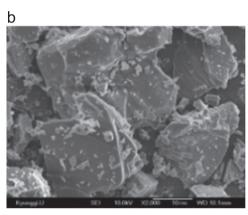


Fig. 6. SEM micrographs of samples prepared with (a) $5\,wt\%$ and (b) $10\,wt\%$ $H_3BO_3.$

CA₆ was predominant at 15 wt% H₃BO₃. CA₂:Mn⁴⁺ was believed to be a suitable red phosphor for white light emitting diodes using near ultraviolet chips.

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (2011–0013554).

References

- S.H. Han, Y.J. Kim, Luminescent properties of Ce and Eu doped Sr₄Al₁₄O₂₅ phosphors, Optical Materials 28 (2006) 626–630.
- [2] T. Aitasalo, J. Holsa, H. Jungner, M. Lastusaari, J. Niittykoski, J. Saarinen, Eu²⁺ doped calcium aluminate coatings by sol-gel methods, Optical Materials 27 (2005) 1537–1540.
- [3] Y.J. Park, Y.J. Kim, Blue emission properties of Eu-doped CaAl₂O₄ phosphors synthesized by a flux method, Materials Science and Engineering B 146 (2008) 84–88.
- [4] T. Aitasalo, J. Holsa, H. Jungner, M. Lastusaari, J. Niittykoski, Mechanisms of persistent luminescence in Eu²⁺, Re³⁺ doped alkaline earth aluminates, Journal of Luminescence 94 (2001) 59–63.
- [5] T. Murata, T. Tanoue, M. Iwasaki, K. Morinaga, T. Hase, Fluor-escence properties of Mn⁴⁺ in CaAl₁₂O₁₉ compounds as red-emitting phosphor for white LED, Journal of Luminescence 114 (2005) 207–212.
- [6] M.G. Brika, Y.X. Panb, G.K. Liu, Spectroscopic and crystal field analysis of absorption and photo-luminescence properties of red phosphor CaAl₁₂O₁₉:Mn⁴⁺ modified by MgO, Journal of Alloys and Compounds 509 (2011) 1452–1456.
- [7] H. Sakamoto, T. Hitomi, Sensitized luminescence in Mn-activated alkaline earth aluminate phosphors, Japanese Journal of Applied Physics 6 (1967) 1315–1325.
- [8] A. Bergstein, W.B. White, Manganese-activated luminescence in SrAl₁₂O₁₉ and CaAl₁₂O₁₉, Journal of the Electrochemical Society 118 (1971) 1166–1171.
- [9] K.G. Kang, J.K. Park, C.J. Kim, S.C. Choi, Luminescence properties of MAl₁₂O₁₉:Mn⁴⁺(M=Ca, Sr, Ba) for UV LEDs, Journal of the Ceramic Society of Japan 117 (2009) 647–649.
- [10] L.G. Wisnyi, The optical properties and structures of CaO-2Al₂O₃ and SrO-2Al₂O₃, Acta Crystallographica 11 (1958) 444–445.
- [11] D.W. Goodwin, A.J. Lindop, The crystal structure of CaO-2Al₂O₃, Acta Crystallographica Section B 26 (1970) 1230-1235.
- [12] D. Jia, J. Zhu, B. Wub, S. E, Luminescence and energy transfer in CaAl₄O₇:Tb³⁺, Ce³, Journal of Luminescence 93 (2001) 107–114.
- [13] X.P. Li, H.J. Dong, J.X. Jun, Structure and luminescence properties of pure CaAl₄O₇:Eu³⁺ by self-propagating combustion synthesis, Optoelectronics and Advanced Materials, Rapid Communications 3 (2009) 1276–1279.
- [14] R.G. Berman, T.H. Brown, A thermodynamic model for multicomponent melts, with application to the system CaO-Al₂O₃-SiO₂, Geochimica et Cosmochimica Acta 48 (1984) 661-678.
- [15] D.T. Palumbo, J.J. Brown Jr., Electronic states of Mn²⁺-activated phosphors, Journal of the Electrochemical Society 118 (1971) 1159–1164.