



#### Available online at www.sciencedirect.com

# **ScienceDirect**

**CERAMICS**INTERNATIONAL

Ceramics International 40 (2014) 241–248

www.elsevier.com/locate/ceramint

# Characterization and spectral studies of Co<sup>3+</sup>-doped Cd<sub>0.4</sub>Mn<sub>0.6</sub>Fe<sub>2</sub>O<sub>4</sub> ferrites

M.A. Amer<sup>a,\*</sup>, T.M. Meaz<sup>a</sup>, A.G. Mostafa<sup>b</sup>, M. El-Kastawi<sup>c</sup>, A.I. Ghoneim<sup>a</sup>

<sup>a</sup>Physics Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt
<sup>b</sup>ME Laboratory, Physics Department, Faculty of Science, Al-Azhar University, Egypt
<sup>c</sup>Physics Department, Faculty of Science, Swiz Canal University, Swiz, Egypt

Received 20 April 2013; received in revised form 5 May 2013; accepted 31 May 2013 Available online 7 June 2013

#### Abstract

A series of the  $Cd_{0.4}Mn_{0.6}Co_xFe_{2-x}O_4$  ferrites,  $0 \le x \le 1$ , were prepared and studied by using X-ray patterns and Mössbauer and FMR spectra. The lattice parameter, mean ionic radii and hopping and bond lengths and edges are determined and discussed as functions of  $Co^{3+}$  content x. The obtained value of oxygen positional parameter was 0.397 for all samples. The recorded FMR and Mössbauer spectra indicated a ferrimagnetic nature of all the samples. The spin–spin relaxation time, the Lande factor (g), line width  $\Delta H$  and the resonance field are affected by the  $Co^{3+}$  additions x. The Mössbauer spectra were analyzed to two sextets attributed to the  $Fe^{3+}$  ions at A- and B-sites. The quadrupole and isomer shift values are found to be independent on x, whereas the hyperfine magnetic fields,  $H_A$  and  $H_B$ , and Mössbauer line widths at the A- and B-sites, respectively, showed dependence on x. Also  $H_A$  and  $H_B$  were affected by the hopping and bond lengths at these sites.

© 2013 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: D. Ferrites; Cd-Mn-Co; X-ray; Mössbauer; FMR and magnetic properties

## 1. Introduction

Ferrites continue to be very attractive materials for technological applications due to their combined properties as magnetic conductors (ferrimagnetic) and electric insulators. Polycrystalline ferrites have applications ranging from simple lifting magnets, microwave frequencies, radio frequencies to the most complex microwave communications to outer space. Many efforts of research have performed in studying the preparation and properties of spinel ferrites [1–10]. Spinel ferrites, by virtue of their structure, can accommodate a variety of cations at different sites enabling a wide variation in electrical and magnetic properties.

Spinel ferrites with cubic crystal structures have interesting structural, physical and magnetic properties. These properties of ferrites strongly depend on the chemical composition, the electronic structure of the magnetic ions, preparation conditions, and the crystal structure of the lattice. The important

\*Corresponding author. Tel.: +20 403344352; fax: +20 403350804. E-mail address: moazamer@hotmail.com (M.A. Amer). quantities for technical applications depend also to a great extent on the microstructure of the product [1-10].

The present work is devoted to study the effect of trivalent Co ions substitution for Fe<sup>3+</sup> ions of spinel ferrites  $Cd_{0.4}Mn_{0.6}Co_xFe_{2-x}O_4$ ,  $0 \le x \le 1$ , on structural, magnetic and site-ionic properties. The techniques used are X-ray patterns, Mössbauer and ferromagnetic resonance spectra.

# 2. Experimental

A series of the  $Cd_{0.4}Mn_{0.6}Co_xFe_{2-x}O_4$  ferrite samples, x=0.0, 0.125, 0.25, 0.375, 0.5, 0.75 and 1, were prepared by the high temperature solid state reaction method. Molar ratios of the high purity CdO, MnO,  $Co_2O_3$  and  $Fe_2O_3$ , were mixed together and milling in agate mortar. The final products were pre-sintered at 1000 °C for 24 h and furnace cooled to room temperature. The samples were ground, pelletized and sintered at 1200 °C for 24 h and cooled slowly to room temperature.

X-ray diffraction patterns were recorded using X-ray diffractometer of the type PRUKER-DX and  $\text{CuK}_{\alpha}$  radiation.

The lattice parameter a was calculated using the relation;  $a=d(h^2+k^2+l^2)^{1/2}$ , where d is the interplanar distance obtained by the Bragg's relation;  $2d\sin\theta=n\lambda$ , where  $\theta$  is the diffraction angle and  $\lambda$  is the X-ray wavelength ( $\lambda=1.5405$  Å).

Ferromagnetic resonance (FMR) spectra of the samples were recorded using JSE-Fe 2xG Jeol EPR spectrometer at room temperature. The FMR spectra were recorded as a first derivative of the absorbed spectra.

A constant acceleration computerized Mössbauer spectrometer and 25 mCi <sup>57</sup>Fe radioactive sources diffused in rhodium matrix were used and metallic iron was used for calibration. The obtained spectra were analyzed and fitted using a computer program based on Lorenzian line shapes.

#### 3. Results and discussion

#### 3.1. X-ray analysis

Fig. 1 shows the X-ray diffraction patterns of the  $Cd_{0.4}Mn_{0.6}Co_xFe_{2-x}O_4$  ferrites. It is shown that the reflection planes (111), (220), (311), (222), (440), (422), (511), (440), (620), (533), (622) and (444) appeared for all the samples, which prove that these samples are single phase of cubic spinel ferrites [11]. The calculated values of the lattice parameter a lie between 8.5005 and 8.5548 Å, which agree with the previous studies [1,5]. The average values of a are plotted against x as seen in Fig. 2. It is seen that a decreases slowly with x, which is attributed to the substitution of Fe<sup>3+</sup> ions (0.64 Å) by the smaller  $Co^{3+}$  ions (0.61 Å).

Fig. 3 displays that X-ray density  $D_x$  and bulk density D increase, while the porosity P decreases with x. The increase in  $D_x$  and D with x may be attributed to the substitution of the larger atomic weight  $Co^{3+}$  (58.93) by  $Fe^{3+}$  (55.85). The decrease in porosity with x may be due to the densification of the samples by sintering process. The X-ray patterns indicated that the peak (311) is a little shifted to higher  $\theta$  values in samples for  $x \ge 0.5$ , which may be ascribed to the increase in packing which is emphasized by the porosity.

The mean ionic radii of the A- and B-sublattices ( $R_A$  and  $R_B$ ) can be calculated for all samples using the cation

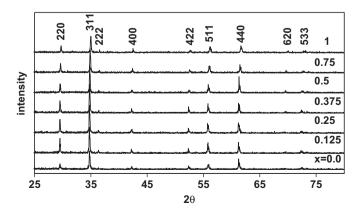



Fig. 1. X-ray diffraction patterns for the system Cd<sub>0.4</sub>Mn<sub>0.6</sub>Co<sub>x</sub>Fe<sub>2-x</sub>O<sub>4</sub>.

distribution and the relations [6,7];

$$R_{\rm A} = 0.4r_{\rm Cd^{2+}} + (0.6-y)r_{\rm Mn^{2+}} + zr_{\rm Co^{3+}} + yr_{\rm Fe^{3+}}$$

$$R_{\rm B} = yr_{\rm Mn^{2+}} + (x-z)r_{\rm Co^{3+}} + (2-y-x)r_{\rm Fe^{3+}}$$

where r denotes to the ionic radius and y and z to the number of Fe<sup>3+</sup> and Co<sup>3+</sup>ions at the A-sites, respectively. The calculated values are given in Table 1. It is obvious that the trend of  $R_A$  and  $R_B$  decrease with x, which may be due to the substitution process. The oxygen positional parameter u can be determined using the relation [6,7];

$$R_{\rm A} = a\sqrt{3}(u-0.25)-r_{\rm O}$$

where  $r_0$  is the  $O^{2-}$  radius. The obtained value of u was 0.397 for all samples. The tetrahedral bond length  $d_{AL}(d_{A-O}^{2-})$  and the octahedral bond length  $d_{BL}(d_{B-O}^{2-})$  can be calculated by the relations [6,7];

$$d_{AL} = a\sqrt{3}(u-0.25)$$

$$d_{BL} = a\left(3u^2 - \frac{11}{4}u + \frac{43}{64}\right)^{1/2}$$

The tetrahedral edge  $d_{AE}$  and the octahedral edge  $d_{BE}$  and unshared edge  $d_{BEU}$  can be determined using the relations [6,7];

$$d_{AE} = a\sqrt{2}(2u-0.5)$$

$$d_{BE} = a\sqrt{2}(1-2u)$$

$$d_{BEU} = a\left(4u^2-3u + \frac{11}{16}\right)^{1/2}$$

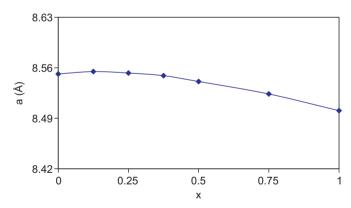



Fig. 2. Dependence of the lattice parameter a on  $Co^{3+}$  ion content x.

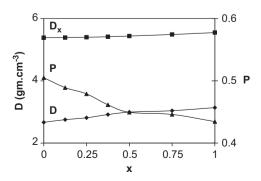



Fig. 3. x dependence of the X-ray density  $(D_x)$ , bulk density (D) and porosity (P).

The obtained lattice parameters, where  $R_A$  and  $R_B$  are the ionic radii of the A- and B-sites, a the lattice parameter,  $d_{AL}$ ,  $d_{BL}$  the A- and B-site bond lengths,  $d_{AE}$  the tetrahedral edge and  $d_{BE}$  and  $d_{BE}$  the octahedral shared and unshared edges and LA, LB are hopping lengths at A- and B-sites, respectively.

|       |                    |                           | t brim | · fra randon tomo |              |                                            |              |               |                           |                           |
|-------|--------------------|---------------------------|--------|-------------------|--------------|--------------------------------------------|--------------|---------------|---------------------------|---------------------------|
| ×     | R <sub>A</sub> (Å) | <i>R</i> <sub>B</sub> (Å) | a(Å)   | $d_{AL}$ (Å)      | $d_{BL}$ (Å) | $d_{AE}\left(\mathring{\mathbf{A}}\right)$ | $d_{BE}$ (Å) | $d_{BEU}$ (Å) | <i>L</i> <sub>A</sub> (Å) | <i>L</i> <sub>B</sub> (Å) |
| 0.0   | 0.77               | 1.29                      | 8.55   | 2.172             | 1.97         | 3.547                                      | 2.5          | 3.046         | 3.703                     | 3.023                     |
| 0.125 | 0.77               | 1.288                     | 8.555  | 2.17              | 1.97         | 3.544                                      | 2.5          | 3.044         | 3.704                     | 3.025                     |
| 0.25  | 0.768              | 1.286                     | 8.553  | 2.168             | 1.97         | 3.541                                      | 2.501        | 3.043         | 3.704                     | 3.024                     |
| 0.375 | 0.767              | 1.284                     | 8.55   | 2.167             | 1.97         | 3.539                                      | 2.5          | 3.042         | 3.702                     | 3.023                     |
| 0.5   | 0.766              | 1.282                     | 8.54   | 2.166             | 1.965        | 3.536                                      | 2.494        | 3.038         | 3.698                     | 3.02                      |
| 0.75  | 0.764              | 1.276                     | 8.524  | 2.164             | 1.963        | 3.533                                      | 2.49         | 3.034         | 3.691                     | 3.014                     |
| 1     | 0.762              | 1.27                      | 8.501  | 2.162             | 1.955        | 3.530                                      | 2.477        | 3.026         | 3.681                     | 3.005                     |
|       |                    |                           |        |                   |              |                                            |              |               |                           |                           |

The distance between the magnetic ions  $\mathrm{Co^{3+}}$  and  $\mathrm{Fe^{3+}}$  (hopping lengths) can be calculated by the relations  $L_{\mathrm{A}}=a_{\mathrm{t}}\sqrt{3/4}$  and  $L_{\mathrm{B}}=a_{\mathrm{t}}\sqrt{2/4}$  for A- and B-sublattices [9]. The determined values are listed in Table 1.

Table 1 illustrates that the trends of  $R_A$ ,  $R_B$ ,  $d_{AL}$ ,  $d_{BL}$ ,  $d_{AE}$ ,  $d_{BE}$ ,  $d_{BEU}$ ,  $L_A$  and  $L_B$  reflect the same behavior of a and decrease against x. This is assigned to the substitution process and cation distribution. The values of u are higher than the standard values (0.375), which may point to a trigonal distortion of the B-site coordination. It may be due to the oxygen dissociation through the samples during the preparation.

# 3.2. Ferromagnetic resonance (FMR) spectra

The absorption of microwave power signal in soft ferrites around zero field has been observed and studied early, where it was clearly distinct to ferromagnetic resonance (FMR) [5,12–15]. Fig. 4 shows the resonance spectra of the  $Cd_{0.4}Mn_{0.6}Co_xFe_{2-x}O_4$  samples at room temperature. It is shown that the resonance spectra exhibit a single broad signal, a change in their line shape and a shift in resonant field ( $H_{res}$ ) with increasing  $Co^{3+}$  content x. The single broad signal with no sign of saturation indicates that  $Fe^{3+}$ ,  $Mn^{2+}$ ,  $Cd^{2+}$  and  $Co^{3+}$  ions co-exist. All spectra exhibit a symmetric broad resonance signal, but their peak-to-peak line width ( $\Delta H_{pp}$ ) and resonant magnetic field ( $H_r$ ) are different from each other.

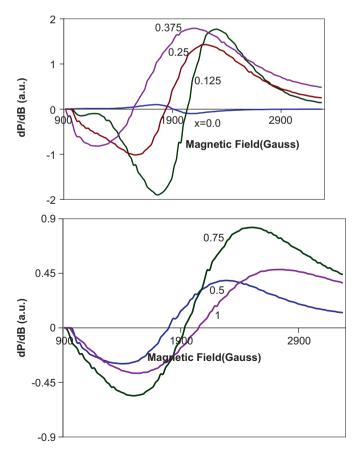



Fig. 4. Resonance spectra of Cd<sub>0.4</sub>Mn<sub>0.6</sub>Co<sub>x</sub>Fe<sub>2-x</sub>O<sub>4</sub> at room temperature.

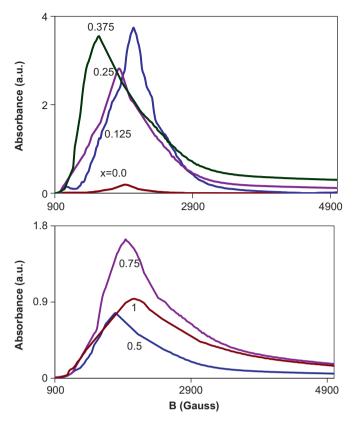



Fig. 5. The absorption power as a function of magnetic field.

For estimation of the line width, resonance field and area under the peak the first derivative spectra were converted into absorption curves as illustrated in Fig. 5. The resonance field ( $H_r$ ) is defined as the field at which dP/dH=0 and is given by [16]:

$$H_{\rm r} = \frac{\omega}{\gamma}$$

where  $\omega$  is the excitation frequency and  $\gamma$  is the gyromagnetic factor for free electrons. The variation of  $H_r$  and the line width  $\Delta H$  with x is illustrated in Fig. 6. It is illustrated that the values of  $H_r$  decreases to a minimum at x=0.375 and increases thereafter, whereas  $\Delta H$  increases. The variation of  $H_r$  may be attributed to the effect of the anisotropy, porosity, inhomogeneous demagnetization, saturation magnetization and internal field on  $H_r$  [13]. The increase of the line width  $\Delta H$  can be explained by the existence of the divalent ions Fe<sup>2+</sup>, Mn<sup>2+</sup>, Cd<sup>2+</sup> and Co<sup>2+</sup> among octahedral B-sites, which can cause a broadening of line width. Large  $\Delta H$  means high field absorption and more electric loss.

The Lande' factor (g) equals 2.0023 for an isolated free electron, and has different values in the solid environment. Fig. 7 evidences that the g-value increases versus x to a maximum value at x=0.375. It is evidenced that the g-values are slightly higher than that of the free electron value. The variation of g-factor values may be attributed to the variation of porosity.

# 3.3. Mössbauer spectra

Fig. 8 shows the room temperature Mössbauer spectra of the ferrite system  $Cd_{0.4}Mn_{0.6}Co_xFe_{2-x}O_4$ . The spectra show a

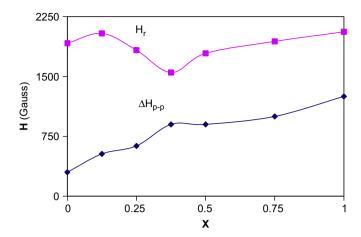



Fig. 6. The resonance field  $H_{\rm r}$  and the line width  $\Delta H$  as functions of  ${\rm Co}^{3+}$  content r

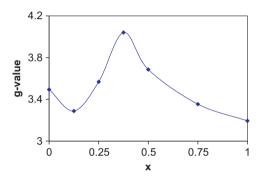



Fig. 7. The relation between g-factor and x.

relaxed magnetic Zeeman pattern for all samples. The relaxation of spectra may be arise from the chemical disorder of cations in the samples i.e. existence of cations of different radii and charges in the sublattices. The spectra have been analyzed to two subspectra, the sharper is ascribed to  $Fe^{3+}$  ions among the tetrahedral A-site (A) and the broader to  $Fe^{3+}$  ions at the octahedral B-site (B). The broader octahedral subspectrum has been analyzed to its multicomponents  $B_n$  (n=0,1,...,5) for all samples. The obtained results from the fitting are given in Table 2. In most magnetically ordered spinel phases, Neel ordering is determined mainly by the strong anti-ferromagnetic A-B interactions and the contribution of A-A and B-B interactions is weak.

The presence of B-site multi-components should be expected because of the distribution of hyperfine fields at the B-site caused principally by a random distribution of the nonmagnetic Cd<sup>2+</sup> ions and to less extent by the magnetic Mn<sup>2+</sup>, Co<sup>3+</sup> and/or Fe<sup>3+</sup> ions at the A-site [17]. Therefore, octahedral Fe<sup>3+</sup> cations have different numbers of Cd<sup>2+</sup> ions occupying its six nearest neighbors at A-sites. Consequently, the superexchange interaction of each B cation with its six A- nearest neighbor cations depends on the population of Cd<sup>2+</sup> ions among the six A-cations, which in turn affects the hyperfine field at the Fe nucleus of the B-cation. In addition, the s-electron density at the nucleus of this B-cation is also

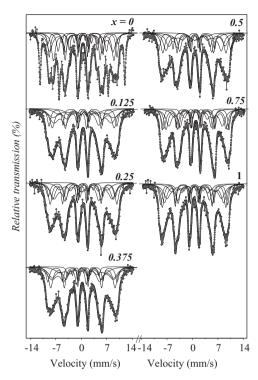



Fig. 8. Room temperature Mössbauer spectra for the system  $Cd_{0.4}Mn_{0.6}Co_x$   $Fe_{2-x}O_4$ .

likely to be dependent on the composition of the six A-nearest neighbors, thus the B- subpattern must be composite. Accordingly the B pattern has been fitted with multi-components  $B_n$ .

Based on the isomer shift  $\delta$ , hyperfine field H, quadrupole shift  $\varepsilon_Q$  and percentage area contributed by the individual hyperfine patterns, each component has been successfully assigned to a specific configuration. The probability P of B-site Fe<sup>3+</sup> ions having n A-site Cd<sup>2+</sup> nearest neighbors was calculated from the binomial equation [17]:

$$P(n) = \left(\frac{6}{n}\right) f^n (1 - f)^{6 - n}$$

where f is the occupation percentage of  $Cd^{2+}$  ions in the A-sublattice and the  $Cd^{2+}$  ions are assumed to be distributed randomly. The calculated values are given in Table 2.

The isomer shift values of Fe<sup>3+</sup> ion at the tetrahedral site  $\delta_{\rm A}$  and the octahedral site  $\delta_{\rm B}$  for the studied samples do not show dependence on x and lie in the range between 0.13 and 1.08 mm/s, where  $\delta_{\rm B} > \delta_{\rm A}$  (Table 2). These values agree with those obtained before for spinel ferrite and are characteristic of high spin Fe<sup>3+</sup> charge states [6,9,17–20]. This points to that the s-electron charge distribution of the Fe<sup>3+</sup> ions in A- and B-sites is independent on the substitution process. The bond separation is smaller for A- and B-sites Fe<sup>3+</sup> ions, larger overlapping of orbitals of Fe<sup>3+</sup> and O<sup>2-</sup> ions at A- and B-sites results in larger covalency and hence  $\delta_{\rm A} < \delta_{\rm B}$  [8,17]. The relatively high values of  $\delta$  at B<sub>3</sub> for x=0.125, B<sub>3</sub>, B<sub>4</sub> and B<sub>5</sub> for x=0.25, B<sub>3</sub> and B<sub>5</sub> for x=0.5 points to the existence of Fe<sup>2+</sup> ions in the sublattices [19].

The quadrupole shift  $\varepsilon_Q$  for these samples is independent on x and lies in the range 0.2 and 1.07 mm/s. The presence of

relatively high values of  $\varepsilon_{\rm O}$  could be attributed to the chemical disorder in spinel structure, which produces electric field gradient (EFG) of varying magnitude, direction, sign and symmetry [8,17–20]. The relatively high values of  $\varepsilon_Q$  may be assign to the existence of Fe<sup>2+</sup> ions at these sites. Siddique et al. [9], indicated that the ionic radii play a large role than their charges in the local symmetry of EFG. The quadrupole shift changes randomly with the addition x. An important contribution to EFG arises from the d-electron covalence of the Fe<sub>R</sub><sup>3+</sup>-O<sup>2-</sup> bond. As evidenced by the supertransferred hyperfine fields, the electron moves from the  $O^{2-}$  p-orbitals into the Fe<sub>R</sub><sup>3+</sup> d-orbitals. This transfer causes a slight deformation of the spherical symmetry of the 3d electron charge density, resulting in a significant contribution to the EFG [6]. This is confirmed by the high values of the oxygen positional parameter u which are around 0.397, whereas the standard value is 0.375.

The values of the hyperfine magnetic field H at A-site ( $H_{\rm A}$ ) and B-sites ( $H_{\rm B}$ ) are given in Table 2. It is observed that the values of  $H_{\rm B}$  are greater than those of  $H_{\rm A}$  (except at x=0.0 and 0.125). This result is understandable in terms of the magnetic exchange interactions [17], where the magnetic moment of  ${\rm Co^{3+}}$  (5.4  $\mu_{\rm B}$ ) is less than that of  ${\rm Fe^{3+}}$  (5.92  $\mu_{\rm B}$ ). In most of the ferrites, the B-site hyperfine magnetic field is generally larger than that of A-site, which is attributed to the dipolar field resulting from deviation from cubic symmetry and covalent nature of tetrahedral bond [19].

Fig. 9 displays the variation of  $H_A$  and the average  $H_B$  with  $\mathrm{Co^{3+}}$  content x. It is displayed that  $H_A$  decreases to a minimum value at  $x\!=\!0.25$  and the trend of the average  $H_B$  increases slowly against x. This can be explained by the substitution process i.e. decreasing the number of  $\mathrm{Fe_A^{3+}}\!-\!\mathrm{O^{2-}}\!-\!\mathrm{Fe_B^{3+}}$  magnetic bonds and increasing the number of  $\mathrm{Fe_A^{3+}}\!-\!\mathrm{O^{2-}}\!-\!\mathrm{Co_B^{3+}}$  and to the cation distribution.

Table 2 illustrates that the line-width  $\Gamma$  of A-site ( $\Gamma_A$ ) and B-site ( $\Gamma_B$ ) changes randomly with x, which assigned to increasing the random distribution of ions among the A- and B-sublattices. The distribution of Fe ions amongst the A- and B-sites can be understood from the variation of the area ratio of B- to A- subspectra with x, as illustrated in Fig. 10. The decrease of this area ratio for  $x \le 0.25$  indicates that the number of  $\text{Co}^{3+}$  ions in the samples increases at the expense of  $\text{Fe}^{3+}$  ions at the B-sites more than those at the A-sites [9]. The increase of area ratio for  $x \ge 0.375$  may reveal the introduction of  $\text{Co}^{3+}$  ions into the A-sites at this concentration.

The cation distribution of this system can be estimated using the area under the well resolved A- and B-subpatterns and the well known ionic site preferences as given in Table 3.

#### 4. Effect of interionic distance and bond length

The dependence of the hyperfine magnetic fields  $H_{\rm A}$  and  $H_{\rm B}$  (average) on the bond lengths  $d_{AL}({\rm Fe_A^{3+}-O^{2-}})$  and  $d_{BL}({\rm Fe_B^{3+}-O^{2-}})$ , respectively, is evidenced in Fig. 11. It is evidenced that  $H_{\rm A}$  slightly increases versus  $d_{AL}$  for  $d_{AL}{\le}2.168$  and sharply thereafter, whereas the trend of the average  $H_{\rm B}$  decreases versus  $d_{BL}$ . The increase of the bond length  $d_{AL}$  reduces the d-electron covalent character of the  ${\rm Fe^{3+}-O^{2-}}$  bond at these sites. This

Table 2 The obtained Mössbauer parameters for the system  $Cd_{0.4}Mn_{0.6}Co_xFe_{2-x}O_4$ ; where H is the hyperfine magnetic field,  $\varepsilon_Q$  the quadrupole shift,  $\delta$  the isomer shift,  $\Gamma_{1.6}$  the line width,  $A_o$  the fractional area of each site and P the calculated probability.

| x     | Site                                   | H(T)           | QS (mm/s)     | IS (mm/s)     | $\Gamma_{1,6} \text{ (mm/s)}$ | $A_0$        | P              |
|-------|----------------------------------------|----------------|---------------|---------------|-------------------------------|--------------|----------------|
| 0     | A                                      | 60.86          | -0.26         | 0.30          | 0.44                          | 0.17         |                |
|       | $\mathrm{B}_{\mathrm{0}}$              | 50.39          | 0.2           | 0.22          | 0.77                          | 0.07         | 0.047          |
|       | $\mathbf{B}_{1}$                       | 48.64          | -0.07         | 0.37          | 0.71                          | 0.14         | 0.187          |
|       | $\mathrm{B}_2$                         | 43.34          | 0.24          | 0.34          | 1.03                          | 0.23         | 0.311          |
|       | $B_3$                                  | 42.29          | -0.56         | 0.18          | 1.4                           | 0.21         | 0.277          |
|       | $\mathrm{B}_4$                         | 32.37          | -0.19         | 0.24          | 0.81                          | 0.12         | 0.138          |
|       | $B_5$                                  | 21.35          | -0.08         | 0.23          | 0.67                          | 0.06         | 0.037          |
| 0.125 | A                                      | 50             | 0.05          | 0.22          | 1.15                          | 0.21         |                |
|       | $\mathrm{B}_{\mathrm{0}}$              | 47.11          | -0.21         | 0.38          | 0.54                          | 0.05         | 0.047          |
|       | $\mathbf{B}_{1}$                       | 43.68          | -0.09         | 0.7           | 1.42                          | 0.13         | 0.187          |
|       | $\mathrm{B}_2$                         | 43.33          | -0.09         | 0.23          | 1.06                          | 0.22         | 0.311          |
|       | $B_3$                                  | 37.14          | -0.01         | 0.25          | 1.64                          | 0.24         | 0.277          |
|       | $\mathrm{B}_4$                         | 27.02          | -0.36         | 0.23          | 1.18                          | 0.12         | 0.138          |
|       | $B_5$                                  | 14.4           | 0.72          | 0.67          | 0.67                          | 0.03         | 0.037          |
| 0.25  | A                                      | 39.1           | 0.24          | 0.22          | 1.98                          | 0.26         |                |
|       | $B_0$                                  | 52.67          | 0.09          | 0.25          | 0.59                          | 0.05         | 0.047          |
|       | $\mathbf{B}_1$                         | 48.45          | -0.43         | 0.28          | 1.11                          | 0.13         | 0.187          |
|       | $\mathbf{B}_2$                         | 48.17          | 0.38          | 0.29          | 1.04                          | 0.19         | 0.311          |
|       | $B_3$                                  | 43.72          | -0.11         | 0.41          | 1.44                          | 0.2          | 0.277          |
|       | $B_4$                                  | 34.64          | -0.18         | 0.60          | 2.07                          | 0.12         | 0.138          |
|       | B <sub>5</sub>                         | 9.55           | 0.65          | 0.90          | 0.82                          | 0.05         | 0.037          |
| 0.375 | A                                      | 41.37          | 0.27          | 0.13          | 2.47                          | 0.25         |                |
| 0.070 | $B_0$                                  | 51.48          | 0.24          | 0.13          | 0.68                          | 0.06         | 0.047          |
|       | $B_1$                                  | 49.82          | -0.08         | 0.28          | 0.93                          | 0.12         | 0.187          |
|       | $\mathbf{B}_1$ $\mathbf{B}_2$          | 46.14          | -0.02         | 0.34          | 1.19                          | 0.12         | 0.311          |
|       | $\mathbf{B}_{2}$ $\mathbf{B}_{3}$      | 40.94          | -0.15         | 0.39          | 2.07                          | 0.19         | 0.277          |
|       | $B_4$                                  | 33.08          | -0.14         | 0.33          | 2.60                          | 0.12         | 0.138          |
|       | $B_4$ $B_5$                            | 22.33          | 0.41          | 0.20          | 0.64                          | 0.12         | 0.138          |
| 0.5   | A                                      | 40.89          | -0.47         | 0.25          | 1.52                          | 0.24         |                |
| 0.5   | $B_0$                                  | 51.93          | -0.25         | 0.31          | 0.47                          | 0.05         | 0.047          |
|       | $\mathbf{B}_0$ $\mathbf{B}_1$          | 49.83          | 0.21          | 0.27          | 0.47                          | 0.03         | 0.047          |
|       |                                        | 46.73          | -0.20         | 0.30          | 1.16                          | 0.13         | 0.187          |
|       | $\mathbf{B}_2$                         |                | 0.79          | 0.42          |                               |              | 0.311          |
|       | $B_3$                                  | 41.75          |               |               | 1.72                          | 0.2          |                |
|       | $egin{array}{c} B_4 \ B_5 \end{array}$ | 31.16<br>11.24 | -0.04<br>1.07 | 0.32<br>1.08  | 2.44<br>2.14                  | 0.12<br>0.05 | 0.138<br>0.037 |
| 0.75  | A                                      | 39.75          | -0.05         | 0.25          | 1.63                          | 0.24         |                |
| 0.73  |                                        | 52.08          |               | 0.20          | 0.41                          | 0.24         | 0.047          |
|       | $B_0$                                  |                | 0.05<br>0.07  |               |                               |              | 0.047          |
|       | $B_1$                                  | 49.44          |               | 0.25          | 0.69                          | 0.13         |                |
|       | $B_2$                                  | 46.20          | -0.45         | 0.29          | 1.21                          | 0.21         | 0.311          |
|       | $B_3$                                  | 45.59          | 0.39          | 0.31          | 1.16                          | 0.21         | 0.277          |
|       | $\mathbf{B}_4$                         | 28.88          | -0.52         | 0.23<br>0.261 | 1.74                          | 0.12         | 0.138          |
|       | $B_5$                                  | 21.02          | -0.16         |               | 0.63                          | 0.03         | 0.037          |
| 1     | A                                      | 40.45          | 0.17          | 0.17          | 1.94                          | 0.23         |                |
|       | $B_0$                                  | 51.58          | 0.10          | 0.18          | 0.36                          | 0.04         | 0.047          |
|       | $\mathrm{B}_1$                         | 49.35          | -0.10         | 0.28          | 0.81                          | 0.14         | 0.187          |
|       | $B_2$                                  | 46.92          | 0.09          | 0.17          | 0.94                          | 0.19         | 0.311          |
|       | $B_3$                                  | 43.69          | -0.28         | 0.34          | 1.45                          | 0.23         | 0.277          |
|       | $\mathrm{B}_4$                         | 32.89          | -0.28         | 0.24          | 1.74                          | 0.11         | 0.138          |
|       | $B_5$                                  | 22.98          | 0.125         | 0.18          | 1.33                          | 0.07         | 0.037          |
| Error |                                        | $\pm 0.2$      | $\pm 0.02$    | $\pm 0.02$    | $\pm 0.02$                    | $\pm 0.01$   |                |

reduction causes the decrease in the s–d orbital overlap and hence, the hyperfine field  $H_{\rm A}$  increases [9,21]. The decrease of  $H_{\rm B}$  against  $d_{\rm BL}$  may be due to the formation of clusters and

diminishing of the lattice parameter a, which distort the Fe<sup>3+</sup>–O<sup>2-</sup> bonds. Also it may be due to the increase in the number of oxygen vacancies (i.e. growth of u) at the A-sites,

which causes an increase of the s–d orbital overlap. As a result the d-electron covalent character of the Fe<sup>3+</sup>–O<sup>2-</sup> bond increases, and hence  $H_B$  decreases [9,21].

The variation of  $H_A$  and the average  $H_B$  against  $L_A$  and  $L_B$ , respectively, reflects the same behavior as displayed in Fig. 12 This variation can be explained as follows; (1) the increase of  $L_A$  and  $L_B$  leads to the increase in the cation–cation overlap and s-electron density, which is reflected in increasing  $H_A$ , (2) the decrease of average  $H_B$  against  $L_B$  may be due to the fact that: the growth of the distance  $L_B$  can lead to thermal excitations at room temperature reducing the average magnetic moment of  $Fe^{3+}$ , so that the spin density transferred along the  $Fe^{3+}$ – $O^2$ – $Fe^{3+}$  and  $Co^{3+}$ – $O^2$ – $Fe^{3+}$  paths is diminished and (3) the formation of clusters can distort the cationic overlapping which in turn reduces  $H_B$  [9,21].

#### 5. Conclusion

The  $Cd_{0.4}Mn_{0.6}Co_xFe_{2-x}O_4$  spinel ferrite, x=0.0, 0.125, 0.25, 0.375, 0.5, 0.75 and 1, were prepared by the standard

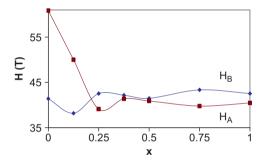



Fig. 9. The variation of the hyperfine magnetic fields,  $H_A$  and  $H_B$ , against x.

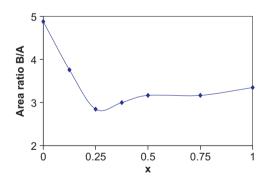



Fig. 10. The variation of area ratio of B- to A-sites with x.

ceramic technique. X-ray patterns, ferromagnetic resonance (FMR) and Mössbauer spectra were used to carry out this study. X-ray patterns revealed the cubic structure of these samples. The lattice parameter, mean ionic radii and hopping and bond lengths, edges, resonance field  $H_{\rm r}$ , separate energy  $\Delta U$  and quality factor (Q) and the trend of the hyperfine magnetic fields,  $H_{\rm A}$  and  $H_{\rm B}$ , of the A- and B-sites, respectively, were decreased with the increase of  ${\rm Co}^{3+}$  content x. The obtained oxygen positional parameter was higher than the standard value 0.375.

The recorded FMR and Mössbauer spectra proved the ferrimagnetic nature of all samples. The FMR spectra showed a single symmetric broad resonance signal with no sign of saturation. The line width was slightly increasing and the Lande factor (g) was increasing to a maximum value at x=0.375.

Mössbauer spectra were analyzed to two sextets and attributed to  $\text{Fe}^{3+}$  ions existing amongst the A- and B-sites. The subpatterns belonging to the B-site were analyzed to their multicomponents  $B_n$ . The quadrupole shift  $\varepsilon_Q$  and isomer shift  $\delta$  values were found to be independent on x. The relatively high values of  $\varepsilon_Q$  and  $\delta$  proved the existence of  $\text{Fe}^{2+}$  ions in

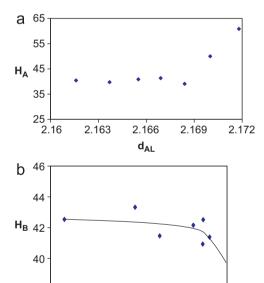



Fig. 11. The variation of (a)  $H_{\rm A}(T)$  versus  $d_{AL}({\rm \AA})$  and (b) average  $H_{\rm B}(T)$  versus  $d_{BL}({\rm \AA})$ .

 $d_{BL}$ 

1.966

1.972

1.96

| Table 3              |              |        |        |             |      |                |
|----------------------|--------------|--------|--------|-------------|------|----------------|
| The estimated cation | distribution | of the | system | Cdo 4Mno 6C | o.Fe | O <sub>4</sub> |

| <i>x</i> -value | A-site                                  | B-site                          |
|-----------------|-----------------------------------------|---------------------------------|
| 0.0             | $Cd_{0.4}Mn_{0.26}Fe_{0.34}$            | $Mn_{0.34}Fe_{1.66}$            |
| 0.125           | $Cd_{0.4}Mn_{0.205}Fe_{0.395}$          | $Mn_{0.395}Co_{0.125}Fe_{1.48}$ |
| 0.25            | $Cd_{0.4}Mn_{0.145}Fe_{0.455}$          | $Mn_{0.455}Co_{0.25}Fe_{1.295}$ |
| 0.375           | $Cd_{0.4}Mn_{0.145}Co_{0.05}Fe_{0.405}$ | $Mn_{0.455}Co_{0.325}Fe_{1.22}$ |
| 0.5             | $Cd_{0.4}Mn_{0.145}Co_{0.095}Fe_{0.36}$ | $Mn_{0.455}Co_{0.405}Fe_{1.14}$ |
| 0.75            | $Cd_{0.4}Mn_{0.145}Co_{0.155}Fe_{0.3}$  | $Mn_{0.455}Co_{0.595}Fe_{0.95}$ |
| 1               | $Cd_{0.4}Mn_{0.145}Co_{0.225}Fe_{0.23}$ | $Mn_{0.455}Co_{0.775}Fe_{0.77}$ |

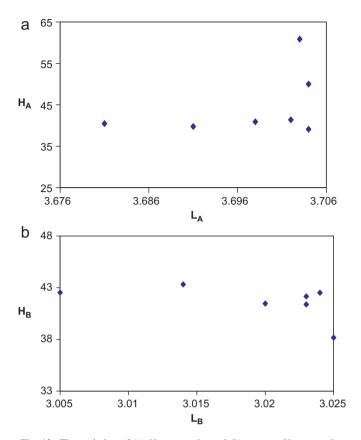



Fig. 12. The variation of (a)  $H_{\rm A}$  versus  $L_{\rm A}$  and (b) average  $H_{\rm B}$  versus  $L_{\rm B}$ .

the sample sublattices. The random change of the Mössbauer line widths  $\Gamma_{\rm A}$  and  $\Gamma_{\rm B}$  with x pointed to the growth of chemical disorder in the samples and presence of nonmagnetic Cd<sup>2+</sup> ions at A-sites. The cation distribution of the system was estimated, where the obtained results pointed to the formation of ferrimagneticaly ordered clusters.

The hyperfine magnetic fields  $H_A$  and  $H_B$ , were affected by the hopping lengths,  $L_A$  and  $L_B$ , and bond lengths,  $d_{AO}$  and  $d_{BO}$ , at the A- and B-sites, respectively.

## References

[1] A.M.M. Farea, S. Kumar, K.M. Batoo, A. Yousef, C.G. Lee, Alimuddin, Structure and electrical properties of Co<sub>0.5</sub>Cd<sub>x</sub>Fe<sub>2.5-x</sub>O<sub>4</sub> ferrites, Journal of Alloys and Compounds 464 (2008) 361.

- [2] A.R. Shitre, V.B. Kawade, G.K. Bichile, K.M. Jadhav, X-ray diffraction and dielectric study of Co<sub>1-x</sub>Cd<sub>x</sub>Fe<sub>2-x</sub>Cr<sub>x</sub>O<sub>4</sub> ferrite system, Materials Letters 56 (2002) 188.
- [3] M. Maisnam, S. Phanjoubam, H.N.K. Sarma, C. Prakash, L.R. Devi, O. P. Thakur, Structural and DC resistivity behavior of Li–Mn–Ni ferrites substituted with trace amount of Co<sup>2+</sup>, Physica B 370 (2005) 1–5.
- [4] S. Kumar, A.M.M. Farea, K.M. Batoo, C.G. Lee, B.H. Koo, A. Yousef, Alimuddin, Mössbauer studies of Co<sub>0.5</sub>Cd<sub>x</sub>Fe<sub>2.5-x</sub>O<sub>4</sub> (0.0≤x≤0.5) ferrite, Physica B 1016 (2008) 1.
- [5] P.K. Nayak, Synthesis and characterization of cadmium ferrite, Materials Chemistry and Physics 112 (2008) 24.
- [6] M.A. Amer, Mössbauer, infrared, and X-ray studies of Ti-doped CoCr<sub>1.2</sub>Fe<sub>0.8</sub>O<sub>4</sub> ferrites, Physica Status Solidi A 237 (2) (2003) 459.
- [7] M.A. Amer, <sup>57</sup>Fe Mössbauer, infrared and X-ray studies of the system Zn<sub>1-x</sub>Cu<sub>x</sub>Cr<sub>0.8</sub>Fe<sub>1.2</sub>O<sub>4</sub>, Physica Status Solidi 181 (2000) 539.
- [8] M.A. Amer, S. Ata-Allah, T. Meaz, S. Aboul-Enein, M. Abd-El-Hamid, Mössbauer, infrared and X-ray studies for Ni<sub>0.5</sub>Zn<sub>0.5</sub>Cr<sub>x</sub>Fe<sub>2-x</sub>O<sub>4</sub> ferrites, Turkish Journal of Physics 29 (2005) 163.
- [9] M.A. Amer, Structural characterization of the Co<sub>1+x</sub>Ti<sub>x</sub>Fe<sub>2(1-x)</sub>O<sub>4</sub> ferrites, Physics of Low-Dimensional Structures 25/2 (2006) 96.
- [10] S.S. Shinde, K.M. Jadhav, Electrical and dielectric properties of silicon substituted cobalt ferrites, Materials Letters 37 (1998) 63.
- [11] JCPDS Cards no. (22-1086), (79-1155) and (73-1964), International Center for Diffraction Data, (accessed 14.10.08).
- [12] S.S. Bellad, B.K. Chougule, Microstructure-dependent magnetic properties of Li–Cd ferrites, Materials Research Bulletin 8 (1998) 1165.
- [13] C.T. Hsieh, J.T Lue, Anisotropy-induced quantum superparamagnet state in cobalt-ferrite nanoparticles at low temperatures, Physics Letters A 316 (2003) 329
- [14] O. Silva, P.C. Morais, Investigation of anisotropy in cadmium ferritebased ionic magnetic fluid using magnetic resonance, Journal of Magnetism and Magnetic Materials 289 (2005) 136.
- [15] N. Petchsang, W. Pon-on, J.H. Hodak and I.M. Tang, Magnetic properties of Co-ferrite-doped hydroxyl-apatite nanoparticles having a core/shell structure, Journal of Magnetism and Magnetic Materials 321, (2009), 1990.
- [16] C.P. Poole, H.A. Farach, Electron spin resonance handbook, Materials Characterization, vol. 10, ASM International514.
- [17] M.A. Amer, O.M. Hemeda, <sup>57</sup>Fe Mössbauer and infrared studies of the system Co<sub>1-x</sub>Cd<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub>, Hyperfine Interactions 96 (1995) 99.
- [18] S.S. Ata-Allah, M.K. Fayek, H.S. Refai, M.F. Mostafa, Mössbauer effect study of copper containing nickel-aluminate ferrite, Journal of Solid State Chemistry 149 (2000) 434.
- [19] S. Kumar, A.M.M. Farea, K.M. Batoo, C.G. Lee, B.H. Koo, A. Yousef, Alimuddin, Mössbauer studies of Co<sub>0.5</sub>Cd<sub>x</sub>Fe<sub>2.5-x</sub>O<sub>4</sub> (0.0≤x≤0.5) ferrite, Physica B 403 (2008) 3604.
- [20] S.S. Ata-Allah, M.K. Fayek, M. Yahia, Mössbauer and DC electrical resistivity study of Zn substituted tetragonal CuFe<sub>2-y</sub>Ga<sub>y</sub>O<sub>4</sub> compound, Journal of Magnetism and Magnetic Materials 279 (2004) 411.
- [21] M.A. Amer, S.A. Saafan, S.M. Attia, The effect of interionic distance on the properties of Al-doped Mn–Zn ferrites, European Physical Journal: Applied Physics 35 (2006) 201.