

Available online at www.sciencedirect.com

ScienceDirect

CERAMICSINTERNATIONAL

Ceramics International 40 (2014) 3895-3902

www.elsevier.com/locate/ceramint

Low temperature sintering and microwave dielectric properties of CaSiO₃–Al₂O₃ ceramics for LTCC applications

Huanping Wang^a, Zuopeng He^b, Denghao Li^a, Ruoshan Lei^a, Jinmin Chen^a, Shiqing Xu^{a,*}

^aCollege of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, PR China ^bSemiconductor Manufacturing International (Shanghai) Corp., Shanghai 201203, PR China

Received 27 June 2013; received in revised form 3 August 2013; accepted 6 August 2013 Available online 22 August 2013

Abstract

The effects of CuO, Li₂CO₃ and CaTiO₃ additives on the densification, microstructure and microwave dielectric properties of CaSiO₃–1 wt% Al₂O₃ ceramics for low-temperature co-fired applications were investigated. With a single addition of 1 wt% Li₂CO₃, the CaSiO₃–1 wt% Al₂O₃ ceramic required a temperature of at least 975 °C to be dense enough. Large amount addition of Li₂CO₃ into the CaSiO₃–1 wt% Al₂O₃ ceramics led to the visible presence of Li₂Ca₃Si₆O₁₆ and Li₂Ca₄Si₄O₁₃ second phases. Fixing the Li₂CO₃ content at 1 wt%, a small amount of CuO addition significantly promoted the sintering process and lowered the densification temperature to 900 °C whereas its addition deteriorated the microwave dielectric properties of CaSiO₃–1 wt% Al₂O₃ ceramics. Based on 10 wt% CaTiO₃ compensation in temperature coefficient, good microwave dielectric properties of ε_r =8.92, $Q \times f$ =19,763 GHz and τ_f = –1.22 ppm/°C could be obtained for the 0.2 wt% CuO and 1.5 wt% Li₂CO₃ doped CaSiO₃–1 wt% Al₂O₃ ceramics sintered at 900 °C. The chemical compatibility of the above ceramics with silver during the cofiring process has also been investigated, and the result showed that there was no chemical reaction between silver and ceramics, indicating that the as-prepared composite ceramics were suitable for low-temperature co-fired ceramics applications. Crown Copyright © 2013 Published by Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: Microwave dielectric properties; CaSiO₃ ceramic; Al₂O₃ ceramic; LTCC

1. Introduction

The rapid growth of the telecommunication and satellite broadcasting industry has created a high demand for microwave ceramic components. Multi-layer devices, which consist of alternating microwave dielectric ceramics and internal metallic electrode layers, enable the microwave components to be miniaturized and hybridized. As a metallic electrode, Ag has been widely used because of its high conductivity and low cost. Compared with the melting temperature of Ag, which is about 961 °C, the sintering temperature of the microwave dielectric ceramics is generally high, above 1300 °C. Therefore, from the point view of the fabrication of multi-layer devices, it is important to develop low temperature co-fired ceramics (LTCC) [1]. Several LTCC systems such as (Mg, Ca) TiO₃, Ba₅Nb₄O₁₅, Li₂ATi₃O₈ (A=Mg, Zn), Ba₂Ti₉O₂₀ and

ZnTiNb₂O₈ have been investigated for microwave applications [2–8]. However, most of the reported LTCC microwave dielectric ceramics show a relatively high dielectric constant, which could be applied only in low frequency ranges such as 1.89 and 2.45 GHz. Comparatively, LTCC microwave dielectric ceramics with low-permittivity, which can work at a high frequency such as millimeter-wave range and are required for multilayer components particularly antennas and baluns, have not been extensively studied [9].

CaSiO₃ ceramic has been proved to be an excellent dielectric material with a low dielectric constant and a low dielectric loss, and it might be regarded as a suitable candidate for antennas and baluns. However, the sintering temperature range of neat CaSiO₃ ceramic is very narrow. Chakradhar et al. pointed out that it was difficult to obtain dense CaSiO₃ ceramic since its grains grew exceptionally and the bulk CaSiO₃ ceramic became more porous with the increase of the calcination temperature [10]. In our previous work, the sintering behavior and microwave dielectric properties of CaSiO₃ ceramics have been investigated by a traditional solid-state

^{*}Corresponding author. Tel.: +86 571 86835781; fax: +86 571 28889527. *E-mail addresses*: wanghuanping@cjlu.edu.cn (H. Wang), sxucjlu@hotmail.com (S. Xu).

process and a sol–gel method, respectively [11]. The maximum bulk density of CaSiO₃ ceramic sintered at 1340 °C prepared by the conventional solid-state process was 2.439 g/cm³, and the microwave dielectric properties were ε_r =6.59 and $Q \times f$ =13,109 GHz. Whereas for CaSiO₃ ceramic obtained by the sol–gel method, the maximum bulk density was 2.505 g/cm³ and the microwave dielectric properties were ε_r =6.69 and $Q \times f$ =25,398 GHz. The density value of the above two samples synthesized either by the traditional solid-state method or by the sol–gel method is much smaller than that of the theoretical density of the CaSiO₃ ceramic, which is 2.91 g/cm³, indicating that it is difficult to obtain dense CaSiO₃ ceramic.

In order to improve the sintering characteristic and microwave dielectric properties, Sun and co-workers have used $\mathrm{Mg^{2}^{+}}$ to substitute $\mathrm{Ca^{2}^{+}}$ in the $\mathrm{CaSiO_{3}}$ host to prepare the $\mathrm{CaO-MgO-SiO_{2}}$ ceramics for LTCC applications [9,12]. In our previous work, we have found that the $\mathrm{Al_{2}O_{3}}$ addition can restrict the growth of $\mathrm{CaSiO_{3}}$ grains by surrounding their boundaries and also improve the bulk density of $\mathrm{CaSiO_{3}}$ - $\mathrm{Al_{2}O_{3}}$ ceramics [13]. The optimum amount of $\mathrm{Al_{2}O_{3}}$ addition was found to be 1 wt%, and the derived $\mathrm{CaSiO_{3}}$ -1 wt% $\mathrm{Al_{2}O_{3}}$ ceramic presented improved microwave dielectric properties of ε_r =6.66 and $\mathrm{Q} \times f$ =24,626 GHz. However, the sintering temperature is high, which is about 1250 °C, so the $\mathrm{CaSiO_{3}}$ - $\mathrm{Al_{2}O_{3}}$ ceramics cannot be co-fired with the Ag electrode.

In this work, CuO and Li₂CO₃ were added to the CaSiO₃–1 wt% Al₂O₃ ceramics to decrease the sintering temperature for LTCC applications, and CaTiO₃ was selected as compensation for a zero temperature coefficient. Furthermore, microstructure, microwave dielectric properties, green tape and cofiring with silver electrode of the CuO, Li₂CO₃ and CaTiO₃ added CaSiO₃–1 wt% Al₂O₃ ceramics were also investigated.

2. Experimental procedure

Specimen powders were prepared by a conventional solid-state method using commercial oxide powders (>99.5%) of CaCO₃, SiO₂, Al₂O₃, CuO, Li₂CO₃ and TiO₂ as raw materials. Stoichiometric CaCO₃ and SiO₂ (TiO₂) powders were weighed and ground in ethanol for 24 h in a balling mill with ZrO₂ balls. Prepared powders were dried and calcined at 1200 °C for 2 h in air to obtain CaSiO₃ (CaTiO₃). The calcined powders were mixed as desired composition CaSiO₃ with 1 wt% Al₂O₃ and different amounts of CuO, Li₂CO₃ and CaTiO₃ additives and re-milled for 24 h. After drying and sieving, the asprepared powders together with the organic binder (5 wt% polyvinyl alcohol) were uniaxially pressed under a pressure of 135 MPa into cylinders of 15 mm in diameter and 7–8 mm in thickness. These samples were then sintered at 875–1000 °C for 2 h in air with a heating rate of 5 °C/min.

The bulk densities of the sintered pellets were measured by the Archimedes method using distilled water as medium. The sintered bulks were broken up and ground to powders using an agate mortar. Crystal structures of the powders were performed by the X-ray diffraction (XRD, ARL XTRA) with Cu K_{α} radiation (36 kV, 30 mA, 2θ =10–80°). The polished surfaces

of the ceramics were investigated by scanning electron microscopy (SEM, S-4800) after thermal etching. The microstructure observation of the green tape and the interface of ceramic and silver were performed by scanning electron microscopy (SEM, TM3000). The dielectric constants ε_r and the quality values $Q \times f$ at microwave frequencies were measured by Hakki–Coleman dielectric resonator method [14,15] using an Agilent 8719ET (50 MHz to 13.5 GHz) Network Analyzer. The temperature coefficient of the resonant frequency τ_f was also measured by the same method in the temperature range from 25 °C to 80 °C and calculated by the following equation:

$$\tau_f = \frac{f_{80} - f_{25}}{f_{25} \times 55} \times 10^6 \text{ (ppm/}^\circ C)$$

where f_{80} and f_{25} represent the resonant frequency at 80 °C and 25 °C, respectively.

3. Results and discussion

3.1. Effects of the CuO addition on $CaSiO_3$ –1 wt% Al_2O_3 ceramics

Fig. 1 shows the bulk densities of $CaSiO_3-1$ wt% Al_2O_3 ceramics sintered at different temperatures with 1 wt% Li_2CO_3 and different amounts of CuO additions. It is firstly evidenced that ceramics with the addition of CuO and Li_2CO_3 could be sintered at temperatures in the range of 900–925 °C whereas the ceramic without CuO addition requires a higher temperature, which is at least 975 °C, to be dense enough. The effect of CuO addition on crystal structure is investigated by the XRD analysis. Due to the small quantity of Al_2O_3 , Li_2CO_3 and CuO, only the phase of $CaSiO_3$ (PDF 27-0088) is observed, as is shown in Fig. 2.

The SEM photographs of CaSiO₃–1 wt% Al₂O₃ ceramics incorporated with 1 wt% Li₂CO₃ and different amounts of CuO sintered at 900 °C for 2 h are illustrated in Fig. 3(a)–(d).

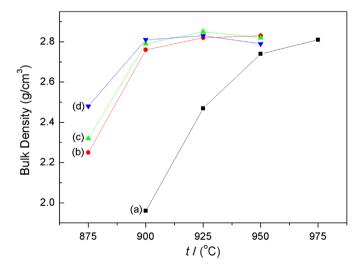


Fig. 1. Bulk densities of $CaSiO_3-1$ wt% Al_2O_3 ceramics sintered at different temperatures with 1 wt% Li_2CO_3 and (a) 0 wt%, (b) 0.2 wt%, (c) 0.4 wt% and (d) 0.8 wt% CuO additions.

Fig. 3(a) shows that the average grain size is about 0.5–1 μm and there are many pores in the bulks, which indicates that the CaSiO₃–1 wt% Al₂O₃ ceramic without CuO addition could be hardly sintered at 900 °C. With the addition of 0.2 wt% CuO, the grains grow and the porosity decrease, as shown in Fig. 3 (b). As CuO content increased gradually, the specimens become well-densified as well as rapid grain growth. In the case of CaSiO₃–1 wt% Al₂O₃ ceramics incorporated with 1 wt % Li₂CO₃ and various amount of CuO, the volume fraction of the liquid increases with the CuO addition. The grains may dissolve into the liquid phase and rapidly rearrange, in which contact points between agglomerates will be dissolved and re-

• CaSiO₃(Wollastonite)

• CaSiO₃(Wollastonite)

• CaSiO₃(Wollastonite)

Fig. 2. XRD patterns of $CaSiO_3-1$ wt% Al_2O_3 ceramics sintered at 900 °C with 1 wt% Li_2CO_3 and (a) 0 wt%, (b) 0.2 wt%, (c) 0.4 wt% and (d) 0.8 wt% CuO additions.

40

2θ (°)

50

60

20

30

crystallized into grains. Base on this approach, the grains will grow and the pores will disappear.

The microwave dielectric properties (ε_r and $Q \times f$) of CaSiO₃–1 wt% Al₂O₃ ceramics incorporated with 1 wt% Li₂CO₃ and various contents of CuO sintered at different temperatures are presented in Figs. 4 and 5. It is evident that the dielectric constants increase to a maximum value and then they are saturated (Fig. 4). With the fixed component, the relationship between dielectric constant and sintering temperature follows the same trend as that between bulk density and sintering temperature because a higher density is associated with a lower porosity and this could result in a higher dielectric constant. For quality factor value, as illustrated in Fig. 5,

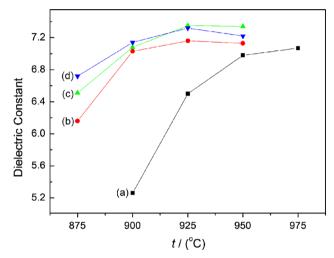


Fig. 4. Dielectric constants of $CaSiO_3-1$ wt% Al_2O_3 ceramics sintered at different temperatures with 1 wt% Li_2CO_3 and (a) 0 wt%, (b) 0.2 wt%, (c) 0.4 wt% and (d) 0.8 wt% CuO additions.

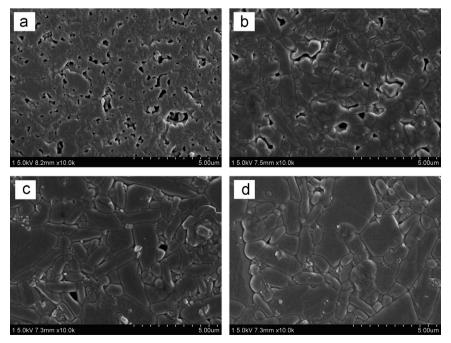


Fig. 3. SEM photographs of $CaSiO_3$ -1 wt% Al_2O_3 ceramics sintered at 900 °C with 1 wt% Li_2CO_3 and (a) 0 wt%, (b) 0.2 wt%, (c) 0.4 wt% and (d) 0.8 wt% CuO additions.

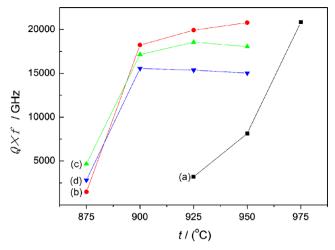


Fig. 5. $Q \times f$ values of CaSiO₃–1 wt% Al₂O₃ ceramics sintered at different temperatures with 1 wt% Li₂CO₃ and (a) 0 wt%, (b) 0.2 wt%, (c) 0.4 wt% and (d) 0.8 wt% CuO additions.

ceramics with a higher CuO addition exhibit lower value for the flux addition from 0 wt% to 0.8 wt%. With 0.2 wt%, 0.4 wt % and 0.8 wt% CuO additions, the $Q \times f$ value of the CaSiO₃–1 wt% Al₂O₃ ceramics sintered at 900 °C is 18,220 GHz, 17,144 GHz and 15,548 GHz, respectively. Although a small amount of CuO addition can significantly promote the densification process and lower the sintering temperature to 900 °C, the above results indicate that CuO addition deteriorates the microwave dielectric properties of CaSiO₃–1 wt% Al₂O₃ ceramics.

3.2. Effects of the Li_2CO_3 addition on $CaSiO_3$ –1 wt% Al_2O_3 ceramics

Fig. 6 shows the X-ray diffraction patterns of CaSiO₃-1 wt % Al₂O₃ ceramics incorporated with 0.2 wt% CuO and different amounts of Li₂CO₃ sintered at 900 °C for 2 h. For the specimens with 0.8 wt% Li₂CO₃ content, the entire diffraction pattern correlates to the CaSiO₃ (PDF 27-0088) ceramic and no other phases are found. However, when the Li₂CO₃ content exceeds 1.0 wt%, peaks corresponding to Li₂Ca₃Si₆O₁₆ (PDF 31-0713) and Li₂Ca₄Si₄O₁₃ (PDF 31-0714) phases appear and the intensity of these peaks increases with the increase of Li₂CO₃ addition. From the bulk densities of CaSiO₃-1 wt% Al₂O₃ ceramics shown in Fig. 7, it is clear that the Li₂CO₃ addition improves the sintering process and decreases the densification temperature. With the Li₂CO₃ addition amounts of 0.4 wt%, 0.8 wt%, 1.0 wt%, 1.5 wt% and 2.0 wt%, the bulk density of the ceramics sintered at 900 °C is 2.59 g/cm³, 2.73 g/cm³, 2.76 g/cm³, 2.79 g/cm³ and 2.77 g/cm³, respectively. According to the phase diagram of Li₂O-CaO-SiO₂ solid solution, a eutectic point at 954 °C exists between the Li₂Ca₃Si₆O₁₆ and Li₂Ca₄Si₄O₁₃ phases [16,17]. Therefore, it is considered that Li₂CO₃ will exist as liquid phase during the sintering process and assist the densification of CaSiO₃-1 wt% Al₂O₃ ceramics, and then react with CaSiO₃ to form Li₂Ca₃Si₆O₁₆ and Li₂Ca₄Si₄O₁₃ phases.

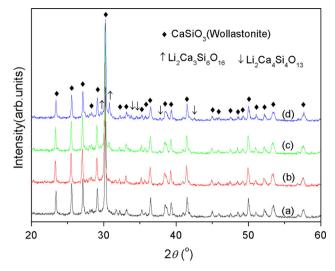


Fig. 6. XRD patterns of $CaSiO_3-1$ wt% Al_2O_3 ceramics sintered at 900 °C with 0.2 wt% CuO and (a) 0.8 wt%, (b) 1.0 wt%, (c) 1.5 wt% and (d) 2.0 wt% Li_2CO_3 additions.

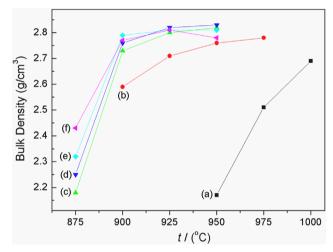


Fig. 7. Bulk densities of $CaSiO_3-1$ wt% Al_2O_3 ceramics sintered at different temperatures with 0.2 wt% CuO and (a) 0.2 wt%, (b) 0.4 wt%, (c) 0.8 wt%, (d) 1.0 wt%, (e) 1.5 wt% and (f) 2.0 wt% Li_2CO_3 additions.

The SEM photographs of CaSiO₃-1 wt% Al₂O₃ ceramics incorporated with 0.2 wt% CuO and different amounts of Li₂CO₃ sintered at 900 °C for 2 h are illustrated in Fig. 8. When the Li₂CO₃ addition is increased from 0.8 wt% to 1.5 wt %, the grains grow and the specimens become densified, as shown in Fig. 8(a)–(c). However, the surface of the ceramics seems to be porous as the Li₂CO₃ addition reaches 2.0 wt%. One possible explanation is that the volatilization of the excess Li₂CO₃ happens and results in porosity. During the sintering process, the liquid phase from Li₂CO₃ may penetrate the grains completely and then react with CaSiO₃ to form Li₂Ca₃Si₆O₁₆ and Li₂Ca₄Si₄O₁₃ second phases, in which case the CaSiO₃ grains will be separated from one another by these second phases. Energy dispersive spectrum (EDS) is taken for the composition analysis. From Fig. 9(a) and (b), the coarse grains are found to be CaSiO₃, and Al₂O₃ grains are observed around the CaSiO₃ grains, which is consistent with our previous work

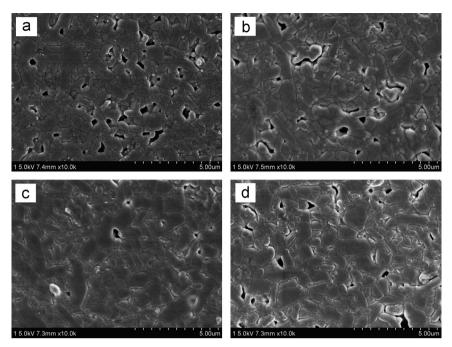
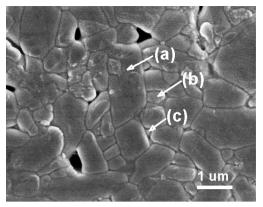


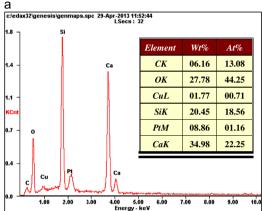
Fig. 8. SEM photographs of $CaSiO_3$ -1 wt% Al_2O_3 ceramics sintered at 900 °C with 0.2 wt% CuO and (a) 0.8 wt%, (b) 1.0 wt%, (c) 1.5 wt% and (d) 2.0 wt% Li_2CO_3 additions.

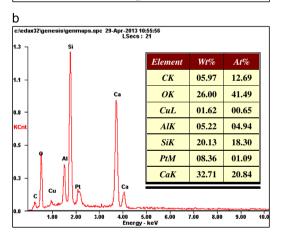
[13]. Fig. 9(c) shows Ca element is less than Si element, combined with the XRD analysis, this may mean that there exist $\text{Li}_2\text{Ca}_3\text{Si}_6\text{O}_{16}$ phase which can restrict the growth of CaSiO_3 grains by surrounding their boundaries. Compared with CuO addition, Li_2CO_3 addition can not only promote the sintering process, but also result in the presence of $\text{Li}_2\text{Ca}_3\text{Si}_6\text{O}_{16}$ and $\text{Li}_2\text{Ca}_4\text{Si}_4\text{O}_{13}$ second phases, which could restrict the CaSiO_3 grains growth.

The dielectric constant (ε_r) and quality factor value $(Q \times f)$ of CaSiO₃-1 wt% Al₂O₃ ceramics incorporated with 0.2 wt% CuO and different amounts of Li₂CO₃ sintered at different temperatures are presented in Figs. 10 and 11, respectively. The dielectric constant of specimens is approximately proportional to the sintered bulk density of specimens. The dielectric constant of CaSiO₃-1 wt% Al₂O₃ ceramics with 0.2 wt%, 0.4 wt%, 0.8 wt%, 1.0 wt%, 1.5 wt% and 2.0 wt% Li₂CO₃ addition sintered at 900 °C is 6.39, 6.89, 7.03, 7.15 and 7.18, indicating the dielectric constant increases slightly with the increase of the Li₂CO₃ amount. Combined with the empirical rule of $\ln \varepsilon_r = \sum_i V_i \ln \varepsilon_{ri}$, where V_i and ε_{ri} are the volume fraction and permittivity of each phase, respectively [12,18], it is considered that the dielectric constant of the Li₂Ca₃Si₆O₁₆ and Li₂Ca₄-Si₄O₁₃ compounds is larger than that of CaSiO₃-1 wt% Al₂O₃. Fig. 11 shows that the $Q \times f$ value of the CaSiO₃-1 wt% Al₂O₃ ceramics sintered at 900 °C gradually increases with the increase of the Li₂CO₃ addition from 0.2 wt% to 1.5 wt%, and a maximum $Q \times f$ value of 21,950 GHz is obtained when the ceramics are incorporated with 0.2 wt% CuO and 1.5 wt% Li₂CO₃. Further increase of the Li₂CO₃ addition deteriorates the microwave dielectric properties, and the $Q \times f$ value decreases to 20,371 GHz as the Li₂CO₃ addition increases to 2.0 wt%. We conclude that high amounts of Li₂CO₃ and CuO additions produce second phases spreading in CaSiO₃-1 wt% Al₂O₃

ceramics and degrade the $Q \times f$ value. In addition, volatilization of the excess Li_2CO_3 additions results in porosity, which will deteriorate the microwave dielectric properties.


The variation of τ_f as a function of different amounts of CuO and Li₂CO₃ additions is also investigated. The τ_f changes little with different amount of CuO and Li₂CO₃ additions. With the doping concentration of 0.2 wt% CuO and 1.5 wt% Li₂CO₃, the τ_f value of CaSiO₃–1 wt% Al₂O₃ ceramic sintered at 900 °C is -46 ppm/°C.


3.3. Effects of the $CaTiO_3$ addition on $CaSiO_3$ –1 wt% Al_2O_3 ceramics


In order to obtain a zero temperature coefficient, CaTiO₃ was selected as compensation [19]. Fig. 12 shows the microwave dielectric properties (ε_r , $Q \times f$ and τ_f) of CaSiO₃–1 wt% Al₂O₃ ceramics sintered at 900 °C with 0.2 wt% CuO, 1.5 wt% Li₂CO₃ and various CaTiO₃ contents. It is evident that the temperature coefficient (τ_f) decreases with the increase of CaTiO₃ content and the τ_f value is -1.22 ppm/°C as the CaTiO₃ content reaches 10 wt%. Due to the high dielectric constant (ε_r =170) and low quality factor value ($Q \times f$ =3600 GHz) [20], CaTiO₃ addition leads to the increase of dielectric constant and decrease of $Q \times f$ value. When the CaTiO₃ content is 10 wt%, the dielectric constant and $Q \times f$ value of the ceramic is 8.92 and 19,763 GHz, respectively.

3.4. Co-fired with Ag electrode

In order to investigate ceramics slurry for tape casting, the $CaSiO_3-1$ wt% Al_2O_3 powders doped with 0.2 wt% CuO, 1.5 wt% Li_2CO_3 and 10 wt% $CaTiO_3$ were first mixed with solvent and dispersant in a ball mill for 12 h. Then the binder

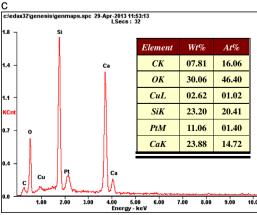


Fig. 9. SEM and EDS images of $CaSiO_3-1$ wt% Al_2O_3 ceramic sintered at 900 °C with 0.2 wt% CuO and 2.0 wt% Li_2CO_3 additions.

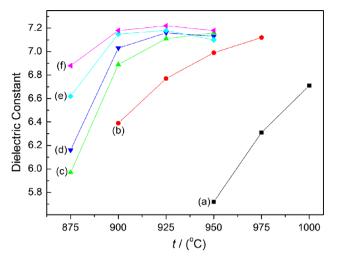


Fig. 10. Dielectric constants of $CaSiO_3-1$ wt% Al_2O_3 ceramics sintered at different temperatures with 0.2 wt% CuO and (a) 0.2 wt%, (b) 0.4 wt%, (c) 0.8 wt%, (d) 1.0 wt%, (e) 1.5 wt% and (f) 2.0 wt% Li₂CO₃ additions.

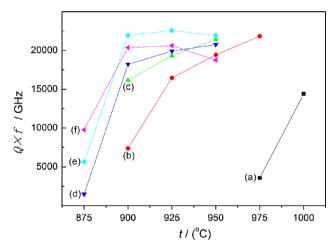


Fig. 11. $Q \times f$ values of CaSiO₃–1 wt% Al₂O₃ ceramics sintered at different temperatures with 0.2 wt% CuO and (a) 0.2 wt%, (b) 0.4 wt%, (c) 0.8 wt%, (d) 1.0 wt%, (e) 1.5 wt% and (f) 2.0 wt% Li₂CO₃ additions.

and plasticizer were added, and mixed for another 12 h to obtain the slurry. The solvent was the mixture of toluol and ethanol, and the dispersant was menhaden fish oil. The binder itself was polyvinyl butyral (PVB), and the compatible plasticizer was butyl benzyl phthalate (S160). The viscosity of the ceramics slurry was 1865 mPa s. Fig. 13 shows the microstructures of the green tapes. In the green state, the average particle size of LTCC ceramics is around $1\,\mu m$, and the microstructures of the green tapes are uniform and there is no agglomeration. On the other hand, the surface of the green tape is glabrous. The green tape has very high density and tensile strength.

For compatibility tests, ceramics sheet with Ag electrodes were co-fired and analyzed to detect interactions between the low-fired samples and electrodes. SEM analysis reveals that there is no interaction forming new phases after firing, as shown in Fig. 14. It is obvious that the LTCC materials do not react with Ag electrodes. Therefore, CaSiO₃–Al₂O₃ ceramics incorporated with CuO–Li₂CO₃–CaTiO₃ additions could be regarded as suitable candidates for LTCC materials due to their

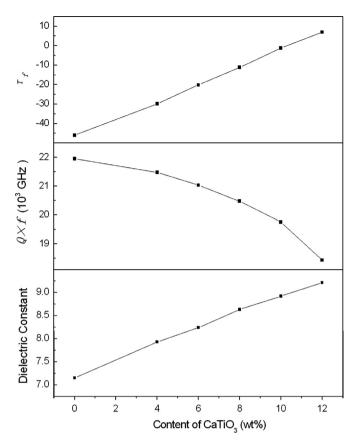


Fig. 12. Microwave dielectric properties of $CaSiO_3-1$ wt% Al_2O_3 ceramics sintered at 900 °C incorporated with 0.2 wt% CuO, 1.5 wt% Li_2CO_3 and different amounts of $CaTiO_3$.

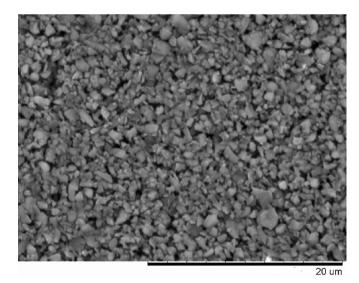


Fig. 13. SEM micrograph of the green tape.

low sintering temperature, good microwave dielectric properties and compatibility with Ag electrodes.

4. Conclusions

A small amount of CuO and Li₂CO₃ addition into the CaSiO₃-1 wt% Al₂O₃ ceramic could lower the densification

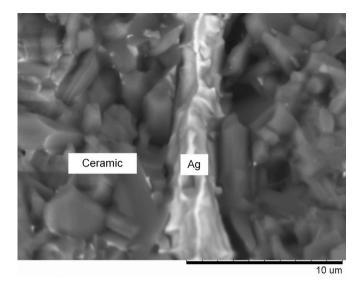


Fig. 14. SEM micrograph of $CaSiO_3$ –1 wt% Al_2O_3 ceramics incorporated with 0.2 wt% CuO, 1.5 wt% Li_2CO_3 and 10 wt% $CaTiO_3$ co-fired with Ag in air at 900 °C for 2 h.

temperature from 1250 °C to 900 °C. With a single addition of 1 wt% Li₂CO₃, the CaSiO₃-1 wt% Al₂O₃ ceramic required at least 975 °C to be dense enough, whereas a small amount of CuO addition significantly promoted the sintering process and lowered the densification temperature to 900 °C. However, CuO addition deteriorated the microwave dielectric properties of CaSiO₃-1 wt% Al₂O₃ ceramics. Fixing the CuO content at 0.2 wt%, the Li₂CO₃ addition not only promoted the sintering process, but also resulted in the presence of Li₂Ca₃Si₆O₁₆ and Li₂Ca₄Si₄O₁₃ second phases, which could restrict the CaSiO₃ grains growth. Based on 10 wt% CaTiO₃ compensation in temperature coefficient, good microwave dielectric properties of $\varepsilon_r = 8.92$, $Q \times f = 19,763$ GHz and $\tau_f = -1.22$ ppm/°C were obtained for the 0.2 wt% CuO and 1.5 wt% Li₂CO₃ doped CaSiO₃-1 wt% Al₂O₃ ceramics sintered at 900 °C. The asprepared low-temperature sintering ceramics powders were suitable for the tape casting process, and these ceramics were good candidates for LTCC applications with silver electrode.

Acknowledgment

This work was financially supported by the Science and Technology Innovative Research Team of Zhejiang Province (2010R50016) and the Nature Science Foundation of Zhejiang Province (Y1110648).

References

- [1] M.H. Kim, Y.H. Jeong, S. Nahm, H.T. Kim, H.J. Lee, Effect of B_2O_3 and CuO additives on the sintering temperature and microwave dielectric properties of $Ba(Zn_{1/3}Nb_{2/3})O_3$ ceramics, Journal of the European Ceramic Society 26 (2006) 2139–2142.
- [2] H. Jantunen, A. Uusimäki, R. Rautioaho, S. Leppävuori, Temperature coefficient of microwave resonance frequency of a Low-Temperature Cofired Ceramic (LTCC) system, Journal of the American Ceramic Society 85 (2002) 697–699.

- [3] T. Hu, A. Uusimäki, H. Jantunen, S. Leppävuori, K. Soponmanee, S. Sirisoonthorn, Optimization of MgTiO₃-CaTiO₃ based LTCC tapes containing B₂O₃ for use in microwave applications, Ceramics International 31 (2005) 85–93.
- [4] C.L. Huang, C.L. Pan, W.C. Lee, Microwave dielectric properties of mixtures of glass-forming oxides Zn–B–Si and dielectric ceramics MgTiO₃–CaTiO₃ for LTCC applications, Journal of Alloys and Compounds 462 (2008) L5–L8.
- [5] H. Zhuang, Z.X. Yue, F. Zhao, L.T. Li, Low-temperature sintering and microwave dielectric properties of Ba₅Nb₄O₁₅–BaWO₄ composite ceramics for LTCC applications, Journal of the American Ceramic Society 91 (2008) 3275–3279.
- [6] S. George, M.T. Sebastian, Low-temperature sintering and microwave dielectric properties of Li₂ATi₃O₈ (A=Mg, Zn) ceramics, International Journal of Applied Ceramic Technology 8 (2011) 1400–1407.
- [7] W. Huang, K.S. Liu, L.W. Chu, G.H. Hsiue, I.N. Lin, Microwave dielectric properties of LTCC materials consisting of glass–Ba₂Ti₉O₂₀ composites, Journal of the European Ceramic Society 23 (2003) 2559–2563.
- [8] M. Guo, S.P. Gong, G. Dou, D.X. Zhou, A new temperature stable microwave dielectric ceramics: ZnTiNb₂O₈ sintered at low temperatures, Journal of Alloys and Compounds 509 (2011) 5988–5995.
- [9] Q.L. Zhang, H. Yang, H.P. Sun, A new microwave ceramic with low-permittivity for LTCC applications, Journal of the European Ceramic Society 28 (2008) 605–609.
- [10] R.P.S. Chakradhar, B.M. Nagabhushana, G.T. Chandrappa, K.P. Ramesh, J.L. Rao, Solution combustion derived nanocrystalline macroporous wollastonite ceramics, Materials Chemistry and Physics 95 (2006) 169–175.
- [11] H.P. Wang, Q.L. Zhang, H. Yang, H.P. Sun, Synthesis and microwave dielectric properties of CaSiO₃ nanopowder by the sol–gel process, Ceramics International 34 (2008) 1405–1408.

- [12] H.P. Sun, Q.L. Zhang, H. Yang, J.L. Zou, (Ca_{1-x}Mg_x)SiO₃: a low-permittivity microwave dielectric ceramic system, Materials Science and Engineering B 138 (2007) 46–50.
- [13] H.P. Wang, J.M. Chen, W.Y. Yang, S.Q. Feng, H.P. Ma, G.H. Jia, S.Q. Xu, Effects of Al₂O₃ addition on the sintering behavior and microwave dielectric properties of CaSiO₃ ceramics, Journal of the European Ceramic Society 32 (2012) 541–545.
- [14] B.W. Hakki, P.D. Coleman, A dielectric resonator method of measuring inductive capacitors in the millimeter range, IEEE Transactions on Microwave Theory and Techniques 8 (1960) 402–410.
- [15] W.E. Courtey, Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators, IEEE Transactions on Microwave Theory and Techniques 18 (1970) 476–485.
- [16] S.M. Salman, H. Darwish, E.A. Mahdy, Crystallization characteristics and physico-chemical properties of the glasses based on Li₂O–CaO–SiO₂ eutectic (954 °C) system containing magnesium oxide, Ceramics International 34 (2008) 1819–1828.
- [17] S.M. Salman, H. Darwish, E.A. Mahdy, The influence of Al₂O₃, MgO and ZnO on the crystallization characteristics and properties of lithium calcium silicate glasses and glass-ceramics, Materials Chemistry and Physics 112 (2008) 945–953.
- [18] C.L. Huang, S.S. Liu, C.C. Chen, High dielectric constant low loss in the (La_{1/2}Na_{1/2})TiO₃–Ca(Mg_{1/3}Nb_{2/3})O₃ ceramic system at microwave frequency, Journal of Alloys and Compounds 468 (2009) L13–L16.
- [19] W. Lei, W.Z. Lu, X.C. Wang, Temperature compensating ZnAl₂O₄–Co₂TiO₄ spinel-based low-permittivity microwave dielectric ceramics, Ceramics International 38 (2012) 99–103.
- [20] M.A. Sanoj, C.P. Reshmi, K.P. Sreena, M.R. Varma, Sinterability and microwave dielectric properties of nano-structured 0.95MgTiO₃– 0.05CaTiO₃ synthesised by top down and bottom up approaches, Journal of Alloys and Compounds 509 (2011) 3089–3095.