Improvement of Thermal Stability of Yttria-Doped Tetragonal Zirconia Polycrystals by Alloying with Various Oxides

Tsugio Sato, Shiro Ohtaki, Tadashi Endo and Masahiko Shimada

Department of Applied Chemistry, Faculty of Engineering, Tohoku University, Sendai, Miyagi 980, Japan

SUMMARY

Yttria-doped tetragonal zirconia polycrystals doped with $0-12 \, \text{mol}\%$ of CaO, MgO, CeO₂ and TiO₂ were sintered at $1400-1600^{\circ}\text{C}$ for 3 h, and the mechanical properties and thermal stability of the sintered bodies were evaluated. The degree of the tetragonal-to-monoclinic phase transformation by annealing in humid air or hot water decreased with both increasing amounts of CeO₂ or TiO₂ and decreasing grain size of ZrO₂. Alloying with TiO₂ accelerated the grain growth and depressed densification, but alloying with less than 6 mol% of CeO₂ caused no significant changes in grain size and mechanical properties.

1. INTRODUCTION

Partially stabilized zirconia has excellent mechanical properties such as high strength and high fracture toughness. The martensitic phase transformation from the metastable tetragonal to the stable monoclinic phase is believed to relieve the fracture stress in the vicinity of a crack front. Therefore, it is essential to retain the tetragonal phase at room temperature subsequent to sintering to obtain high strength and tough zirconia ceramics. Maximum strength and toughness have been attained with fully tetragonal zirconia polycrystals (TZP), fabricated by doping with 2-3 mol% of Y₂O₃. However, it has been reported that both the strength and the fracture toughness of Y-TZP were greatly degraded by annealing at low temperatures (150-300°C) in air. The loss of fracture

toughness and strength by annealing is caused by the formation of microcracks accompanying the tetragonal-to-monoclinic phase transformation, which starts from the surface and is particularly enhanced in the presence of water. ⁵⁻⁹ The free energy change of the tetragonal-to-monoclinic phase transformation $(\Delta G_{t\to m})$ can be described by

$$\Delta G_{t \to m} = (G_c^{m} - G_c^{t}) + (G_{se}^{m} - G_{se}^{t}) + (G_s^{m} - G_s^{t})$$

= $\Delta G_c + \Delta G_{se} + \Delta G_s$ (1)

where G_c^m and G_c^t , G_{se}^m and G_s^t and G_s^m and G_s^t are the chemical free energies, the strain free energies and the surface free energies of the monoclinic and tetragonal phases, respectively. It is expected that the tetragonal-to-monoclinic phase transformation can be controlled by increasing ΔG_c , ΔG_{se} and ΔG_s . It was reported that the degree of the phase transformation depended on the Y_2O_3 content, grain size, etc.; the rate of the phase transformation actually decreased $^{5-7}$ with increasing Y_2O_3 content, dispersing Al_2O_3 and decreasing the grain size of ZrO_2 . It should be noted, however, that increasing the thermal stability sometimes results in loss of strength and fracture toughness, i.e. increasing the Y_2O_3 content to more than 4 mol% prevents the phase transformation during low temperature annealing but causes a significant loss in the fracture toughness. In the present study, Y-TZP doped with various amounts of CaO, MgO, CeO₂ and TiO₂ were fabricated and the characteristics of the sintered bodies such as thermal stability and mechanical properties were evaluated.

2. EXPERIMENTAL

Zirconia powders containing 0, 2, 3, 4 and 6 mol% of Y₂O₃ were supplied by Toyo Soda Co. Ltd. All other chemicals were of analytical grade and were used without further purification. Starting powders were prepared by mixing ZrO₂(Y₂O₃) powders and CaO, MgO, CeO₂ and TiO₂ powders by ball milling with plastic balls in a plastic container in acetone; all powders were then dried. The powders were uniaxially pressed at 100 MPa to form pellets, 5 mm in diameter and 5 mm in thickness, and then sintered at 1400, 1450, 1500 and 1600°C for 3 h in air. The sintered bodies were annealed in a stream of humid air at 100–400°C for 50 h or in water at 130°C for 7 days. The partial pressure of water in air was adjusted to 1·54 and 3·35 kPa by bubbling air through the saturated aqueous solutions of Ca(NO₃)₂ · 4H₂O at 25°C and distilled water at 25°C, respectively.

The phases in the surface of the sample were identified by X-ray diffraction analysis using Ni-filtered Cu– $K\alpha$ radiation. Scans of 2θ between

 27° and 33° were conducted to estimate the monoclinic to (tetragonal + cubic) zirconia ratio, and those between 55° and 62° were used to discriminate between the tetragonal and cubic phase. The bulk density of the sintered bodies was measured by Archimedes' technique. The average grain size was determined from scanning electron micrographs of the fracture surface using the intercept method. Vickers microhardness (H_v) was measured by Vickers indentation with loads from 2 to 5 N. Young's modulus (E) was determined by Knoop indentation with loads of 5 N. Fracture toughness (K_{IC}) was measured using the indentation technique 11 at loads from 10 to 20 N.

3. RESULTS AND DISCUSSION

3.1. Characteristics of as-sintered materials

The phase, grain size, relative density and mechanical properties of assintered bodies of $\rm ZrO_2-3\,mol\%\,\,Y_2O_3$ alloyed with various amounts of CaO, MgO, CeO₂ and TiO₂ sintered at 1500°C for 3 h in air are summarized in Table 1 and Fig. 1. The phases of zirconia in $\rm ZrO_2-3\,mol\%\,\,Y_2O_3$ alloyed with CeO₂ and TiO₂ were fully tetragonal and those in $\rm ZrO_2-3\,mol\%\,\,Y_2O_3$ alloyed with CaO and MgO were mixtures of tetragonal

TABLE 1

Phase, Grain Size and Relative Density of As-sintered Bodies of ZrO₂-3 mol% Y₂O₃

Ceramics Alloyed with Various Oxides Sintered at 1500°C for 3 h

Additive	Content/mol%	Phase ^a	Grain size/μm	Relative density/%
None		t	1.1	99.0
	_	t	0.8	99.3
TiO ₂	2	t	2.4	98·1
	5	t	5.1	98.4
	10	t	10.6	96.5
CeO ₂	2	t	1.1	99.7
	5	t	1.3	99.3
	10	t	1.4	99.0
CaO	2	t + c	0.5	99.0
	4	t < c	0.5	98.4
	6	t≪c		95.4
MgO	2	t + c	0.9	98.3
	4	t < c	_	98.5
	6	t ≪ c		96.3

^a t: tetragonal, c: cubic.

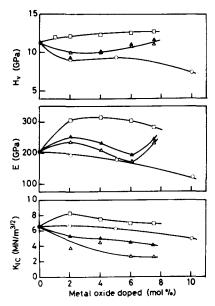


Fig. 1. Vickers microhardness, Young's modulus and fracture toughness of ZrO_2-3 mol% Y_2O_3 ceramics alloyed with various oxides. Metal oxide: CeO_2 , \Box ; TiO_2 , \bigcirc ; MgO, \triangle ; CaO, \triangle .

and cubic. Alloying with CeO_2 resulted in no significant difference in the relative density and grain size, but the values of H_v , E and K_{IC} increased a little. Alloying with TiO_2 resulted in a great increase of grain size and a decrease of relative density. It caused no significant change in K_{IC} , but the values of H_v and E decreased. Alloying with CaO and MgO degraded the value of K_{IC} due to decreasing the tetragonal-ZrO₂ content.

3.2. Tetragonal-to-monoclinic phase transformation in $ZrO_2(Y_2O_3)$ ceramics alloyed with various oxides

 $ZrO_2-3 \text{ mol}\% Y_2O_3$ ceramics alloyed with various amounts of CaO, MgO, CeO₂ and TiO₂ sintered at 1500°C for 3h were annealed in a stream of air with a partial water vapor pressure of 1.540 kPa at 200°C for 50 h or in water at 130°C for 15–140 h. The amount of monoclinic ZrO_2 formed on the surface of the samples is shown in Figs 2 and 3. Figure 2 shows that the tetragonal-to-monoclinic phase transformation was depressed with increasing amounts of metal oxides added. However, the mechanism controlling the phase transformation seemed to be different. Since no decrease in the rate of the phase transformation to attain equilibrium was found in the $ZrO_2-3 \text{ mol}\% Y_2O_3$ ceramics alloyed with CaO and MgO, the depression of the phase transformation might be attributed to the

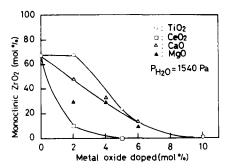


Fig. 2. Amount of monoclinic ZrO₂ formed in ZrO₂-3 mol% Y₂O₃ ceramics alloyed with various oxides by annealing in humid air at 200°C for 50 hours.

smaller amount of the tetragonal- ZrO_2 content in the sintered bodies. It should be noted that the cubic- ZrO_2 content increased with increasing amounts of CaO and MgO added. On the other hand, since ZrO_2-3 mol% Y_2O_3 ceramics alloyed with CeO_2 and TiO_2 were composed entirely of the tetragonal phase as listed in Table 1, CeO_2 and TiO_2 seem to stabilize the tetragonal phase. CeO_2 appeared to be the best oxide for stabilizing the tetragonal ZrO_2 because it caused no significant degradation in sinterability and mechanical properties.

 $\rm ZrO_2-3\,mol\%\,\,Y_2O_3$ ceramics alloyed with various amounts of $\rm CeO_2$ were sintered at 1400, 1450, 1500 and 1600°C for 3 h to fabricate sintered bodies having different grain sizes. The sintered bodies were annealed in moist air with a partial water vapor pressure of $\rm 3.35\,kPa$ at $\rm 100-400^{\circ}C$ for 50 h. The amount of monoclinic $\rm ZrO_2$ formed on the surface of the sample is shown in Fig. 4 as a function of annealing temperature. The amount of monoclinic $\rm ZrO_2$ was at a maximum around 200°C. Both the amount of

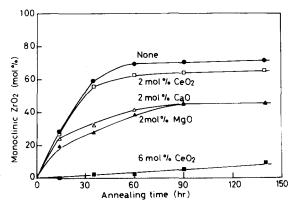


Fig. 3. Time dependence of the amount of monoclinic ZrO₂ formed in ZrO₂-3 mol% Y₂O₃ ceramics alloyed with various oxides by annealing in water at 130°C.

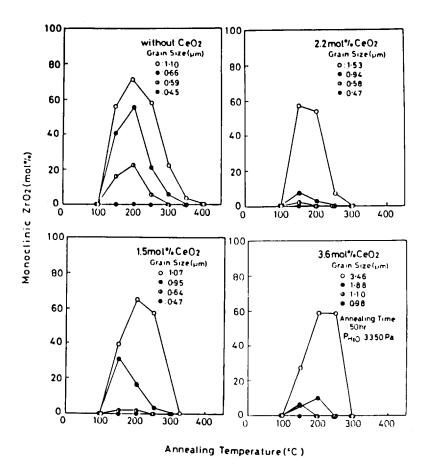


Fig. 4. Relationship between the amount of monoclinic ZrO₂ formed in ZrO₂-3 mol% Y₂O₃ ceramics alloyed with different concentrations of CeO₂ and annealing temperature as a function of grain size.

monoclinic ZrO_2 and the critical temperature (T_c) , below which the monoclinic phase was formed, decreased with increasing amount of CeO_2 added and decreasing grain size, as was expected from eqn (1), i.e. ΔG_c increases with increasing amount of CeO_2 added and ΔG_s is inversely proportional to the grain size as given by eqn (2):

$$\Delta G_{\rm s} = (A_{\rm m} \gamma_{\rm m} - A_{\rm t} \gamma_{\rm t})/V$$

= $6(\gamma_{\rm m} - g_{\rm s} \gamma_{\rm t})/d$ (2)

where $A_{\rm m}$ and $A_{\rm t}$ are the interfacial surface areas and $\gamma_{\rm m}$ and $\gamma_{\rm t}$ are the specific surface energies of the monoclinic and tetragonal states, respectively; $V(V=\pi d^3/6)$ is the transformed volume, d is the diameter of the transformed grain and $g_{\rm s}=A_{\rm t}/A_{\rm m}$.

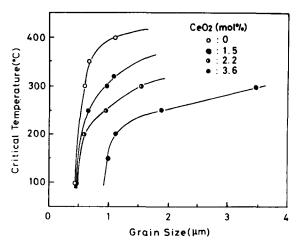


Fig. 5. Relationship between critical temperature and grain size.

By assuming that the value of $\Delta G_{\rm se}$ is zero at equilibrium, eqn (1) can be expressed as

$$\Delta G_c + 6(\gamma_m - g_s \gamma_t)/d = 0 \tag{3}$$

If $\Delta G_{\rm c}$, $\gamma_{\rm m}$ and $\gamma_{\rm t}$ are expressed as a linear function of temperature (eqns (4)–(6)), eqn (7) can be obtained for the relationship between $T_{\rm c}$ and the grain size:

$$\Delta G_{\rm c} = \Delta H_{\rm c}^{\circ} - T \Delta S_{\rm c}^{\circ} \tag{4}$$

$$\gamma_{\rm m} = \gamma_{\rm m}^{\circ} - \Gamma_{\rm m} T \tag{5}$$

$$\gamma_{t} = \gamma_{t}^{\circ} - \Gamma_{t} T \tag{6}$$

$$T_{\rm c} = \left\{ d + 6(\gamma_{\rm m}^{\circ} - g_{\rm s} \gamma_{\rm t}^{\circ}) / \Delta H_{\rm c}^{\circ} \right\} / \left\{ d \Delta S_{\rm c}^{\circ} / \Delta H_{\rm c}^{\circ} + 6(\Gamma_{\rm m} - g_{\rm s} \Gamma_{\rm t}) / \Delta H_{\rm c}^{\circ} \right\}$$

$$= (d - B) / (dA + C) \tag{7}$$

The relationship between T_c and the grain size is plotted in Fig. 5 and the constants A, B and C determined using the values of T_c and the grain size

TABLE 2 Values of Constants in Eqn (7) and the Grain Sizes Corresponding to $T_c = 298 \text{ K}$

Concentration of CeO ₂ /mol%	$A/m K^{-1}$	$B/\mu m$	C/nm K ⁻¹	$\frac{d/\mu m}{(T_{\rm c} = 298 \mathrm{K})}$
0	1.38	0.395	-0.474	0.431
1.5	1.55	0.387	-0.508	0.438
2.2	1.55	0.243	-0.118	0.431
3.6	1.70	0.774	-1.18	0.856

as listed in Table 2. Using these values, it is possible to construct a modified phase diagram indicating whether or not the tetragonal-to-monoclinic phase transformation would occur from the surface of the sintered body. The relationship between $T_{\rm c}$ and the amount of ${\rm CeO_2}$ in ${\rm ZrO_2-3\,mol\%}$ ${\rm Y_2O_3}$ ceramics is illustrated in Fig. 6 as a function of grain size. It is seen that $T_{\rm c}$ decreases with decreasing grain size and increasing amount of ${\rm CeO_2}$. To confirm these results, ${\rm ZrO_2-3\,mol\%}$ ${\rm Y_2O_3}$ ceramics alloyed with

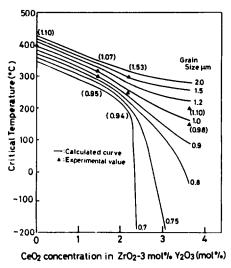


Fig. 6. Relationship between critical temperature and concentration of CeO₂ as a function of grain size.

various amounts of CeO₂ having various grain sizes were annealed in water at 100°C for 7 days; the amount of monoclinic ZrO2 formed is shown in Fig. 7. The shaded part indicates the region where the tetragonalto-monoclinic phase transformation did not occur at all. It is obvious that the stability of the tetragonal ZrO₂ strongly depends on both the amount of CeO₂ alloyed and the grain size, especially for grain sizes below $1 \mu m$. It is important to note that the phase transformation is completely controlled by a grain size less than $0.4 \,\mu\mathrm{m}$ without any addition of CeO_2 . The thermal stability of the tetragonal phase was also evaluated by using zirconia ceramics alloyed with different concentrations of Y₂O₃ and CeO₂. The amount of the monoclinic phase formed by annealing in water at 100°C for 7 days is shown in Fig. 8. The degree of phase transformation decreased with increasing concentration of both Y2O3 and CeO2, i.e. the amount of CeO₂ that could completely control the phase transformation decreased from 12 to 0 mol% on increasing the Y₂O₃ concentration from 0 to 6 mol%.

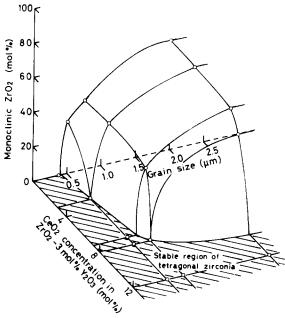


Fig. 7. Relationship of the amount of monoclinic phase formed in ZrO_2-3 mol% Y_2O_3 by annealing in water at $100^{\circ}C$ for 7 days, grain size, and CeO_2 concentration.

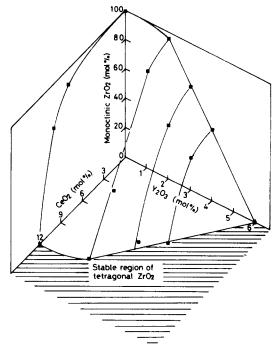


Fig. 8. Relationship of the amount of monoclinic phase formed by annealing in water at 100°C for 7 days and the concentrations of Y₂O₃ and CeO₂.

4. CONCLUSIONS

- 1. Alloying with TiO₂ stabilized the tetragonal-ZrO₂ phase in ZrO₂(Y₂O₃) ceramics.
- 2. Alloying CeO₂ stabilized the tetragonal-ZrO₂ phase in ZrO₂(Y₂O₃) ceramics without loss of the mechanical properties.
- 3. The stability of the tetragonal phase in $ZrO_2(Y_2O_3-CeO_2)$ ceramics increased with increasing amounts of Y_2O_3 and CeO_2 and decreasing grain size.

ACKNOWLEDGEMENTS

The authors are indebted to the management of Toyo Soda Co. Ltd for supplying the starting powders used in the present study. The authors would also like to express their appreciation to Mr H. Matsuo for his contributions to the experiments. This work was partly supported by a Grant of Aid for Scientific Research of the Ministry of Education.

REFERENCES

- Garvie, R. C., Hannink, R. H. J. and Pascoe, R. T., Ceramic steel?, Nature (London), 258 (1975) 703-4.
- 2. Porter, D. L. and Heuer, A. H., Mechanism of toughening partially stabilized zirconia ceramics (PSZ), J. Am. Ceram. Soc., 60 (1977) 183-4.
- 3. Lange, F. F., Transformation toughening, *J. Mater. Sci.*, **17** (1982) 225–34, 235–9, 240–6, 247–54, 255–62.
- Kobayashi, K., Kuwajima, H. and Tsukidate, T., Thermal and mechanical properties of ZrO₂-Y₂O₃ solid electrolyte after aging, Solid State Ionics, 3-4 (1981) 489-93.
- Sato, T. and Shimada, M., Crystalline phase change in yttria-partiallystabilized zirconia by low-temperature annealing, J. Am. Ceram. Soc., 67 (1984) C212-13.
- 6. Sato, T., Ohtaki, S. and Shimada, M., Transformation of yttria partially stabilized zirconia by low temperature annealing in air, *J. Mater. Sci.*, **20** (1985) 1466-70.
- 7. Sato, T. and Shimada, M., Transformation of yttria-doped tetragonal ZrO₂ polycrystals by annealing in water, J. Am. Ceram. Soc., 68 (1985) 356-9.
- 8. Sato, T. and Shimada, M., Transformation of ceria-doped tetragonal zirconia polycrystals by annealing in water, Am. Ceram. Soc. Bull., 64 (1985) 1382-4.
- Tsukuma, K. and Shimada, M., Thermal stability of Y₂O₃-partially stabilized zirconia (Y-PSZ) and Y-PSZ/Al₂O₃ composites, J. Mater. Sci. Lett., 4 (1985) 857-61.

- 10. Fullman, R. L., Measurement of particle sizes in opaque bodies, *Trans AIME*, 197 (1953) 447-52.
- 11. Niihara, K., Morena, R. and Hasseleman, D. P. H., Evaluation of K_{IC} of brittle solid by the indentation method with low crack-to-indent ratios, J. Mater. Sci., 1 (1982) 13–16.

Received 3 January 1986; accepted 5 May 1986