Selected Abstracts from Yogyo-Kyokai-Shi

As a service to readers and with the agreement of The Ceramic Society of Japan, selected English language Abstracts of the papers appearing in the *Journal of the Ceramic Society of Japan (Yogyo-Kyokai-Shi)* are reproduced here. The selection was made by Drs R. Stevens and P. Popper.

Yogyko-Kyokai-Shi **94**(1) (1986) Special Issue Non-Oxide Materials

The page numbers of the papers appear at the end of the abstract.

The Synthesis of Ultrafine Si₂N₄ in a Hybrid Plasma

Toshihiko TANI*, Toyonobu YOSHIDA and Kazuo AKASHI

Department of Metallurgy and Materials Science, Faculty of Engineering, The University of Tokyo 7-3-1, Bunkyo-ku 113 *Present address: Toyota Research and Development Laboratories, Inc.

Ultrafine silicon nitride powders were prepared in a hybrid plasma, which is characterized by the superposition of a radio-frequency plasma and an arc jet. The reactants of SiCl₄ and NH₃ were injected into an arc jet and a tail flame of the hybrid plasma, respectively. The purity of the prepared powder largely depended upon the flow rate of NH₃. Especially, the nitrogen content in the products increased drastically when the flow rate of NH₃ exceeded about 10 l/min, and reached the value of about 37 wt% at the flow rate of 20 l/min. The prepared powder was soft, fluffy, pure white, and completely amorphous. Moreover, the particle size was from 10 to 30 nm. For a better understanding of the process, thermodynamic equilibrium compositions for the Ar-H₁-NH₃-SiCl₄ system were calculated up to 3500 K. Under the assumed conditions, condensed phase of Si is present at the temperature higher than the condensation temperature of Si₃N₄. A lower flow rate of NH₃ widens the temperature range of the Si existence and promotes the formation of SiCl₁ by recombination processes. These results suggested that the effective "Reactive Quenching" is the key to success for the synthesis of ideal ultrafine Si₃N₄ powder in this process.

[Received July 31, 1985]

pp. 1–6