Reduction of Dewaxing Time by Pressurized Atmosphere in the Ceramics Injection Molding Process

Makoto INOUE, Tadamoto SAKAI and Taro KATAGIRI*

```
Machinery and Electronics Technology Center, The Japan Steel Works, Ltd.
6-1, Minami 1-chome, Funakoshi, Aki-ku, Hiroshima-shi 736
* Tokai Konetsu Kogyo Co., Ltd.
```

The effects of the pressurized nitrogen atmosphere on the dewaxing time of injection molded Si_1N_4 green parts have been studied. As-molded parts of complex shapes, such as cutter blades and turbocharger rotors were used, and were dewaxed within one or two days at the heating rate of $10^{\circ}-20^{\circ}\text{C/h}$ in the pressurized ($5\text{ kg/cm}^2\text{G}$) nitrogen gas atmosphere. On the other hand, dewaxing needed 6-20 days by the conventional method with the non-pressurized condition because of the limited heating rate of $1^{\circ}-3^{\circ}\text{C/h}$. The extensive reduction in dewaxing time is explained in terms of the prevention of binder boiling and control of evolved gas volume.

[Received July 31, 1985]

pp. 78-80

Pressureless Sintering of Si₃N₄ with CeO₂, Y₂O₃ and Al₂O₃

Hisao SUZUKI and Hajime SAITO

(Department of Mechanical Systems Engineering, Toyota Technological Institute 2-12-1, Hisakata, Tenpaku-ku, Nagoya-shi 468

Pressureless sintering of Si₃N₄ with CeO₂, Y₂O₃ and Al₂O₃ as sintering aids was carried out at 1750°C for 2 h in N₂ atmosphere. The amount of Al₂O₃ as an additive was 1.5 wt% and that of others (CeO₂ + Y₂O₃) was 15 wt%. The powder bed technique was used to suppress the decomposition of Si₃N₄. The addition of more than 7.5 wt% CeO₂ yielded Si₃N₄ materials having more than 95% relative density and flexural strengths of about 600 MPa at room temperature. These Si₃N₄ materials containing Ce₅(SiO₄)₃N, Y₅(SiO₄)₃N and glassy phase as grain boundary phases were expected to have excellent high-temperature properties, such as superior oxidation resistance and high flexural strength at elevated temperature. With increasing the amount of CeO₂ addition, the fraction of α -Si₃N₄ solid solution, $\alpha'/(\alpha'+\beta)$, increased and reached about 65% for more than 10 wt% CeO₂ addition. The densification mechanism in this system was considered to be liquid phase sintering combined with reaction sintering in which α -Si₃N₄ solid solution was formed. With increasing temperature, α -Si₂N₄ solid solution transformed into β -Si₃N₄. The flexural strength of Si₃N₄ material containing 10 wt% of CeO₂ at 1300°C was as high as 500 MPa. The critical stress intensity factors (K_{1C}) of Si₃N₄ materials by the indentation microfracture method were about 6 MN/m^{3/2}.

[Received July 30, 1985]