A Model for the Formation of Nanosized SiC Powders by Laser-Induced Gas-Phase Reaction

J.-M. Lihrmann

Laboratoire d'Ingénierie des Matériaux et des Hautes Pressions, CNRS, Institut Galilée, Avenue J. B. Clément, 93430 Villetaneuse, France

M. Cauchetier

CEA-DRECAM, Service des Photons, Atomes et Molécules, CE Saclay, 91191 Gif sur Yvette Cedex, France

(Received 9 June 1993; accepted 29 September 1993)

Abstract

Powder refinement is one approach to reducing the frequency of microstructural inhomogeneities in ceramic parts. Laser-induced pyrolysis of gaseous precursors is a reproducible and reliable process to fabricate nanosized particles. In the thermal decomposition of SiH_4 and C_2H_2 by a continuous wave CO_2 laser, the size of the silicon carbide particles is adjusted according to their residence time in the reaction zone. The collision and coalescence model provides a satisfactory agreement with experimental results, whereas the nucleation theory is inappropriate, due to the small dimensions of the critical nuclei.

Durch die Verwendung von Feinstpulvern kann die Defektgröße im Mikrogefüge keramischer Werkstoffe reduziert werden. Die mittels Laser durchgeführte Pyrolyse gasförmiger Verbindungen ist ein reproduzierbares und zuverlässiges Verfahren, um Pulver im Nanometerbereich herzustellen. Bei der thermischen Zersetzung von SiH_4 und C_2H_2 mit einem CO_2 Laser ist die SiC-Teilchengröße nur von der Aufenthaltszeit in der Reaktionszone abhängig. Die Versuchsergebnisse können gut mittels der Kollisionstheorie erklärt werden, während ein Keimbildungsmodell wegen der zu geringen Größen der kritischen Keime nicht geeignet ist.

L'utilisation de poudres de plus en plus fines permet de réduire l'importance des défauts microstructuraux d'une céramique. La pyrolyse de précurseurs gazeux induite par laser est un procédé fiable et reproductible de fabrication de particules nanométriques. Dans la décomposition thermique de SiH_4 et C_2H_2 par un

laser continu CO_2 , le diamètre des particules de carbure de silicium ne dépend que de leur temps de séjour dans la zone réactionnelle. Le modèle des collisions est en bon accord avec les résultats expérimentaux, alors que la théorie de nucléation homogène ne convient pas en raison des dimensions trop réduites des noyaux critiques.

1 Introduction

Vapour-phase synthesis of silicon carbide powders, whether classical, 1,2 plasma-3 or laser-4,5 induced, most often utilizes silane-derived precursors such as CH₃SiCl₃, or silane itself (SiH₄) with an additional carbon source which may be C_2H_4 ,^{4.5} C_2H_2 ⁵ or CH₄.6 In experiments conducted by Haggerty et al. since 1977,7 the laser process is based on the high absorption of SiH₄ at the 10·6-µm radiation of a continuous wave CO₂ laser. When the laser fluence is larger than 2.5 J cm⁻², SiH₄ is decomposed into H₂ and a submicron silicon powder, the shaping and nitriding of which yield a high-quality reactionbonded silicon nitride.^{7,8} In general, hydrocarbons containing no CH₂= group undergo no transformation when they are irradiated by a CO₂ laser beam, but decompose when they are associated with a sensitizer such as SiH₄. The recent identification of intermediate vapour-phase species Si, C₂ and SiC₂, observed after irradiating a SiH₄-C₂H₂ mixture with a continuous wave CO₂ laser,⁹ permits in the present paper the development of a particle formation model for silicon carbide, in good agreement with experimental results and illustrating how particle size is adjusted to the reaction parameters.

Table 1. List of synthesis conditions

Cell pressure Reactants' flow rates (cm³ min⁻¹) at 298 K and 1 atm Diameter of capillary inlet (mm) Flow rate of carrier gas (cm³ min⁻¹) Power of unfocused laser beam (W) Diameter of unfocused laser beam (mm) BET diameter of SiC particles (nm) Residence time in the flame (s) Temperature of the flame (K)	1 atm SiH ₄ : $540 > \Phi > 120$ C ₂ H ₂ : $300 > \Phi > 120$ 1 or 2 2 200 620 12 15 < d < 50 1 < t < 10 1 573 < T < 2 073
--	--

2 Experimental

The experimental apparatus consists of a cross-flow reactor, where the horizontal laser beam intersects the gaseous reactants.^{4,10,11} Crossing of both beams creates a flame, the temperature of which is measured by optical pyrometry; an inert gas (He or Ar) carries the powder to a collection chamber containing a porous metallic filter.

Table 2. Residence time and BET equivalent spherical diameter of SiC particles for three reactants' flow rates

	Run				
	1	2	3		
SiH ₄ flow rate (cm ³ min ⁻¹)	120	200	540		
C ₂ H ₂ flow rate (cm ³ min ⁻¹)	67.4	110	300		
C/Si ratio Residence time, t (s) BET diameter (nm)	$ \begin{array}{r} 1.12 \\ 8-10 \times 10^{-3} \\ 51.8 \end{array} $	$ \begin{array}{c} 1.10 \\ 2-4 \times 10^{-3} \\ 30.6 \end{array} $	$ \begin{array}{r} 1.11 \\ 1 \times 10^{-3} \\ 15.9 \end{array} $		

Typical values and ranges of experimental parameters are listed in Table 1; residence time, flame temperature and particle size all increase with decreasing flow rates (Table 2). As-formed powders (Fig. 1(a)) present the infrared spectrum of silicon carbide, and the X-ray diffraction patterns of crystalline β -SiC (Fig. 1(b)); their BET equivalent

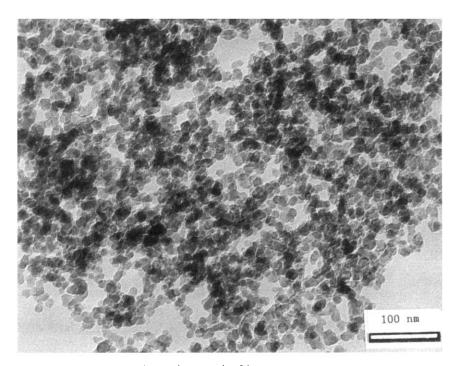


Fig. 1a. TEM photomicrograph of laser-synthesized SiC powder.

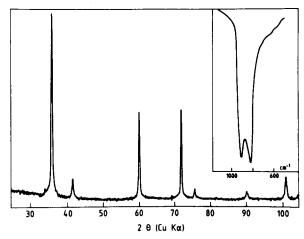


Fig. 1b. X-ray diffraction pattern and IR spectrum of laser-synthesized SiC powder.



Fig. 2. As-measured BET equivalent spherical diameter (nm) of laser-synthesized SiC particles as a function of their residence time (10^{-3} s) in the flame.

spherical diameter varies with the residence time in the flame, as illustrated in Fig. 2.

Laser-induced pyrolysis of SiH_4 and C_2H_2 can result in a nearly complete reaction. For example, for SiH_4 and C_2H_2 flow rates of 300 and $165 \, \mathrm{cm}^3$. min^{-1} , the overall amount of reacted SiH_4 and C_2H_2 is in excess of 99 mol%, while the amount of SiC recovered per hour is 30 g, compared to the theoretical value of $32 \cdot 2$ g. The discrepancy is due to losses occurring in the powder collection and to the formation of minor by-products identified as C_2H_4 , C_3H_6 , $H_2C=C=CH_2$, $H_2C=CH-SiH_3$, $H_2C=CH-C\equiv CH$, $HC\equiv C-C\equiv CH$ and C_6H_6 .

Two models have been considered to explain the vapour-phase formation of SiC particles: classical nucleation, and collision-coalescence. The results are presented in Section 3.

3 Results

The completeness of the reactants' pyrolysis and the experimental evidence⁹ for intermediate species Si, C_2 and SiC_2 support the sequence:

$$SiH_4 \rightarrow Si + 2H_2$$
 (1)

$$C_2H_2 \rightarrow C_2 + H_2$$
 (1')

$$Si + C_2 \rightarrow SiC_2$$
 (2)

$$SiC_2 + Si \rightarrow 2SiC$$
 (3)

for which the following assumptions are made: (i) all species are perfect gases, (ii) the flame's volume in the reactor is negligible and expandable, thus all reactions are at constant pressure and limited to the flame's volume, (iii) the thermal expansion coefficient of SiH₄ and C_2H_2 at constant pressure is 3.6×10^{-3} K⁻¹, independent of temperature.¹²

3.1 Effect of temperature

The partial pressure of SiC and the concentrations of Si and SiC₂ in the flame are listed in Table 3 as functions of temperature, for initial flow rates of $300 \, \text{cm}^3 \cdot \text{min}^{-1} \, \text{SiH}_4$ and $165 \, \text{cm}^3 \cdot \text{min}^{-1} \, \text{C}_2 \text{H}_2$ (values at 1 atm and 298 K).

3.1.1 Homogeneous nucleation model^{13.14}

Considering the nucleation process as a sequence of additions of single molecules to the developing embryo, the following expression has been derived for the nucleation rate J:^{15,16}

$$J(m^{-3} s^{-1}) = \gamma \frac{4\pi r^{*2}}{\sqrt{2\pi mkT}} pc_1 \exp\left(-\frac{\Delta G^*}{kT}\right)$$

where ΔG^* is the Gibbs enthalpy of formation of a critical nucleus of radius r^* , $c_1 = p/kT$ is the monomer concentration and the so-called Zeldovich factor γ accounts for the departure of steady-state from equilibrium concentration of critical nuclei (about 10^{-2} in the usual case).

The free energy of formation of the critical nucleus, ΔG^* , is described by assigning macroscopic thermodynamic properties to the critical nucleus:¹⁷

$$\Delta G^* = \frac{16\pi\sigma^3}{3\Delta G_v^2}$$

where σ is the surface tension and $\Delta G_{\rm v}$ is the free energy change per unit volume produced in the condensation process. In terms of the supersaturation ratio.

$$\Delta G_{\rm v} = -\left(\frac{kT}{\Omega}\right) \cdot \ln\left(\frac{p}{p_0}\right)$$

where Ω is the molecular volume in the solid, and p_0 is the equilibrium vapour pressure of the solid at the temperature T. Eventually, the critical nucleus radius is expressed by

$$r^* = -\frac{2\sigma}{\Delta G_{v}}$$

Using¹⁸ $\sigma = 1.5 \,\mathrm{J \, m^{-2}}$, $\Omega = 2.069 \,6 \times 10^{-29} \,\mathrm{m^3}$ and

Table 3. Evolution of SiC partial pressure (bar), Si and SiC₂ concentrations (mol m⁻³) with temperature

T(K)	1 573-15	1 673-15	1 773.15	1873-15	1 973.15	2073.15
p (SiC)	0.2425	0.2423	0.2422	0.2420	0.2419	0.2418
n_{Si}	0.9271	0.8709	0.8214	0.7770	0.7373	0.7014
n_{SiC_2}	1.1325	1.0640	1.0033	0.949 1	0.9005	0.8568

 $p_0(\text{Pa}) = 1.013 \times 10^5 \exp{(-40.184.09/T + 12.1365)}$ for solid SiC leads to the variations of r^* and J versus temperature, indicated on Figs 3 and 4.

3.1.2 Collision and coalescence

According to the kinetic theory of gases, ¹⁹ the mean velocity C of Si atoms in the flame and their mean free path λ_{Si} are expressed by

$$C = \sqrt{\frac{8kT}{\pi m_{Si}}}$$

and

$$\lambda_{S_{i}} = \frac{1}{\pi \left(n_{S_{i}} \cdot d_{S_{i}}^{2} \cdot \sqrt{2 + n_{S_{i}C_{2}}} \cdot d_{S_{i} - S_{i}C_{2}}^{2} \cdot \sqrt{1 + \frac{m_{S_{i}}}{m_{S_{i}C_{2}}}} \right)}$$

in which k is the Boltzmann constant, m_{Si} , m_{SiC_2} , n_{Si} and n_{SiC_2} are masses and concentrations of Si and SiC₂ in the flame respectively, and $d_{Si-SiC_2} = \frac{1}{2}(d_{Si} + d_{SiC_2}) = \frac{1}{2}(2.34 + 1.812) = 2.076 \text{ A}$; values of d_{Si} and d_{SiC_2} are from Refs 20 and 21.

The collision rate per silicon atom is then $\Lambda(T) = C/\lambda$. Assuming successive collisions Si–SiC₂–Si–Si–SiC₂–Si..., where each Si–SiC₂ collision forms 2 SiC molecules, the mass m (kg) of SiC aggregate formed after time t is $m = \Lambda \times 6.6578 \times 10^{-26} t$, which corresponds to the radius $r(m) = (4.9407 \times 10^{-30} \times \Lambda t)^{1/3}$.

Figure 5 shows the particle diameter as a function of time in the temperature range 1573–2073 K.

3.2 Effect of the reactants' flow rates

The computation detailed in the previous section for SiH_4 and C_2H_2 flow rates of 300 and $165 \text{ cm}^3 \cdot \text{min}^{-1}$, has been repeated at one temperature (1773.15 K) for the three sets of reactants' flow

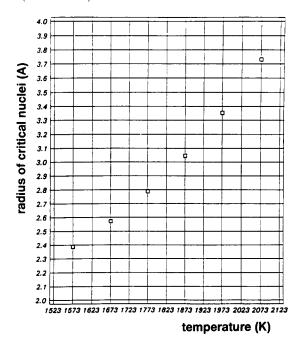


Fig. 3. Variation of the calculated radius of critical nuclei (A) with temperature (K).

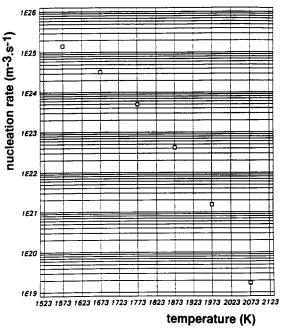


Fig. 4. Variation of the calculated nucleation rate (m⁻³ s⁻¹) with temperature (K).

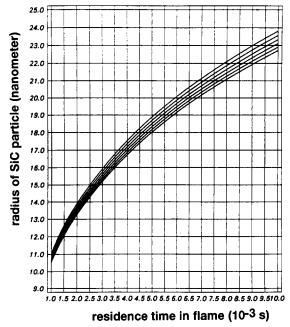


Fig. 5. Variation of the calculated radius (nm) of SiC particles with time (10^{-3} s) at temperature $T = 1573 \cdot 15 \text{ K} + 100 \text{ n}$; n = 0 (top) through 5 (bottom).

rates listed in Table 2, whence by the three curves shown in Fig. 6. As can be seen on this figure, the three curves are almost superimposed and would start to separate from one another only at longer residence times in the flame.

4 Discussion

In the conditions of Table 1 the laser-induced pyrolysis of silane bypasses the formation of disilane and higher polysilanes which would occur at low to moderate temperatures or low laser fluences, $^{22-24}$ and leads directly to the formation of silicon and H_2 as implied by reaction (1). As to C_2H_2 , its

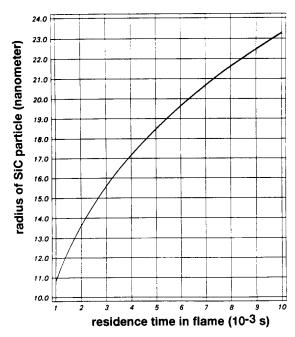


Fig. 6. Variation of the calculated radius (nm) of SiC particles with time (10⁻³s) for the three reactants' flow rates of Table 2 (curves almost superimposed).

decomposition by the laser beam only occurs in the presence of a sensitizer such as SF₆ or SiH₄. The experimental detection⁹ of C₂ atoms supports reaction (1'), for which a kinetic order of 2 relative to C₂H₂ has been found consistent with the fast SiC particle formation.²⁶ With the kinetic constant²⁷ $k = 2.49 \times 10^{13} \exp{(-(4402/T))} \text{mol}^{-1} \text{litres}^{-1}$, the complete thermal decomposition of C₂H₂ is shorter than 10^{-6} s at any temperature higher than $1573.15 \text{ K}.^{26}$ Conversely, a kinetic order of 3, as is observed when C₂H₂ is associated with a very dilute sensitizer,²⁸ would ensure too slow decomposition kinetics for the present case.²⁶

The homogeneous nucleation is not thought to apply to the SiC particle formation. Indeed, the critical radii indicated in Fig. 3 corresponded to SiC clusters of ten molecules or less, to which it is no longer valid to assign macroscopic thermodynamic properties.²⁹ Furthermore, Fig. 4 indicates that the nucleation rate decreases by six orders of magnitude between 1523 and 2073 K. This variation corresponds to an increase in the particle size by two orders of magnitude, far in excess of the threefold increase observed experimentally and mentioned in Table 1.

On the other hand, the application of the collision and coalescence theory is quite valid, since the Knudsen number of the Si-SiC₂ gas, $\text{Kn} = \lambda/r$, is always larger than 10^4 (and therefore > 1). Also, the theoretical results of Fig. 5 are in good agreement with the experimental results of Fig. 2, and one notices the minor influence of temperature on the particle size.

The influence of the reactants' flow rates on the particle size is even less pronounced for a constant

C/S ratio (1.1 in this case, Table 2), as illustrated by the superposition of the three curves (Fig. 6). The flow rate is therefore not a critical parameter of the reaction. Varying the flow rates of the reactants merely changes the velocity of the reacting species, and thus their residence time in the flame, but the supporting curve r = r(t) is always the same for a constant C/Si ratio. In practice the velocity of the reacting species also depends on the diameter of the capillary inlet and the cell pressure.

Furthermore, this model does not preclude the formation of SiC particles containing α -, mixed α/β or amorphous microdomains, as has been recently observed for laser-synthesized nanosized powders, ³⁰ and it pertains to single crystals as well as polycrystalline particles.

It should be noticed that the direct carburization of Si particles into SiC within the experimental time frame of 1 to 10 ms is only consistent with carbon grain boundary diffusion in SiC (Lihrmann, J. M., unpublished), which thus cannot explain the obtention of SiC single crystals mentioned in Ref. 4. For the same reason the shrinking heart model, previously used to describe laser-induced SiC particle formation,⁶ is also believed to be less satisfactory than the collision model, all the more because it requires in addition questionable assumptions such as a constant particle volume or equal densities for Si and SiC.

5 Summary and Conclusions

The formation of nanosized SiC powders by laser-induced pyrolysis of SiH₄ and C₂H₂ is satisfactorily modelled with the collision and coalescence theory assuming intermediate species Si, C₂ and SiC₂. The size of the particles is only governed by the residence time of the reacting species in the flame, which in practice depends on the reactants' flow rates, the diameter of the capillary inlet and the cell pressure. This model offers the advantage of being applicable to various types of particle crystallinity and avoids addressing the direct carburization of silicon. The latter is inconsistent with the obtention of single crystal particles, whereas the nucleation theory can not be applied due to the too small critical radii.

Acknowledgements

The authors wish to thank Dr N. Herlin (CEA-CE Saclay) for fruitful discussions.

References

- Okabe, Y., Hojo, J. & Kato, A., Formation of fine silicon carbide powders by a vapor phase method. J. Less Common Metals, 68 (1979) 29-41.
- 2. Boecker, W. & Hausner, H., Methods for the preparation of

- silicon carbide powders from the gas phase. Ber. Dtsch. Keram. Ges., 55 (1978) 233-7.
- 3. Hollabaugh, C. M., Hull, D. E., Newkirk, L. R. & Petrovic, J. J., R.F. plasma system for the production of ultrafine, ultrapure silicon carbide powder. *J. Mater. Sci.*, **18** (1983) 3190-4.
- 4. Suyama, Y., Marra, R. M., Haggerty, J. S. & Bowen, H. K., Synthesis of ultrafine SiC powders by laser-driven gas phase reactions. *Am. Ceram. Soc. Bull.*, **64** (1984) 1356–9.
- 5. Cauchetier, M., Croix, O., Luce, M., Michon, M., Paris, J. & Tistchenko, S., Laser synthesis of ultrafine powders. *Ceram. Int.*, 13 (1987) 13–17.
- 6. Sawano, K., Haggerty, J. S. & Bowen, H. K., Formation of SiC powder from laser-heated vapor phase reactions. *Yogyo-Kyokai-Shi*, **95** (1987) 64–9.
- Haggerty, J. S., Flint, J., Garvey, G. J., Lihrmann, J. M. & Ritter, J. E., High strength, oxidation-resistant reaction bonded silicon nitride from laser-synthesized silicon powders. In *Ceramic Materials and Components for Engines*, ed. W. Bunk & H. Hausner. DKG Verlag, Frankfurt, 1986, pp. 147–54.
- Haggerty, J. S., Garvey, G. J., Lihrmann, J. M. & Ritter, J. E., Processing and properties of reaction-bonded silicon nitride made from laser-synthesized silicon powders. In *Defect* Properties and Processing of High Technology Nonmetallic Materials, MRS Symposia Proceedings, Vol. 60, ed. Y. Chen, W. D. Kingery & R. J. Stokes. Materials Research Society, Pittsburgh, PA, USA, 1986, pp. 51-62.
- Fantoni, R., Bijnen, F., Djuric, N. & Piccirillo, S., Resonance CARS detection of SiC₂ as reaction intermediate in IR laser synthesis of SiC from SiH₄-hydrocarbon mixtures. *Appl. Phys. B.*, 52 (1991) 176–83.
- Lihrmann, J. M., Haggerty, J. S., Luce, M., Croix, O. & Cauchetier, M., Potentiel des céramiques thermomécaniques élaborées à partir de poudres laser. *Matériaux-Mécanique-Electricité*, 422 (1987) 32-6.
- 11. Cauchetier, M., Croix, O., Luce, M., Lihrmann, J.-M. & Shimazaki, Y., Synthèse de poudres de SiC par laser. Report CEN Saclay, DPC/SPP/SP, August 1987.
- 12. Perry, R. H. & Green, D. (ed.). Perry's Chemical Engineers' Handbook, 6th edn, McGraw Hill, 1984, Chapter 3, p. 49.
- Turnbull, D., In Solid State Physics, Vol. III, ed. F. Seitz & D. Turnbull. Academic Press, NY, 1956, pp. 225–306.
- Dunning, W. J., In Chemistry of the Solid State, ed. W. E. Gardner. Academic Press, NY, 1955, pp. 159–83.

- 15. Becker, R. & Doering, W., Ann. Phys., 24 (1935) 719.
- 16. Zeldovich, J., J. Exptl Theoretical Phys., 12 (1942) 525.
- 17. Gibbs, J. W., Collected Works, Vol. I: Thermodynamics. Yale University Press, New Haven, 1948.
- 18. Report MCIC-HB-07-Vol. 2, Engineering property data on selected ceramics. Volume 2, Carbides, Metals and Ceramics Information Center (MCIC), Battelle Columbus Division, ed. J. F. Lynch, Columbus (Ohio), 2nd ed. (1987).
- Vincenti, W. G. & Kruger, C. H., Introduction to Physical Gas Dynamics, 6th edn. R. E. Krieger Publ., Florida, 1986, p. 52.
- 20. Pauling, L., *Nature of the Chemical Bond*, 3rd edn. Cornell University Press, Yale, CT, USA, 1960.
- Michalopoulos, D. L., Geusic, M. E., Langridge-Smith, P. R. R. & Smaley, R. E., Visible spectroscopy of jet-cooled SiC₂: geometry and electronic structure. *J. Chem. Phys.*, 80 (1984) 3556–60.
- Neudorfl, P., Jodhan, A. & Strausz, O. P., Mechanism of the thermal decomposition of monosilane. J. Phys. Chem., 84 (1980) 838–9.
- Newman, G., O'Neil, H. E., Ring, M. A., Leska, F. & Shipley, N., Kinetics and mechanism of the silane decomposition. *Int. J. Chem. Kinet.*, 11 (1979) 1167–82.
- Coltrin, M. E., Kee, R. J. & Miller, J. A., A mathematical model of the coupled fluid mechanics and chemical kinetics in a chemical vapor deposition reactor. *J. Electrochem. Soc.*, 131 (1984) 425–34.
- Borsella, E. & Caneve, L., Frequency and time resolved luminescence of intermediate reaction products in ir laser decomposition of silane. Appl. Phys. B, 46 (1988) 347–55.
- Lihrmann, J. M., Procédés d'élaboration de quelques céramiques techniques. Habilitation à diriger des recherches, Université Paris-Nord, 1993.
- Legrand, J. C. & Tardieu de Maleissye, J., Détermination des paramètres cinétiques de la pyrolyse de l'acétylène entre 700 et 1000°C. C.R. Acad. Sci. C, 272 (1971) 1926–9.
- 28. Tardieu de Maleissye, J., Lempereur, F. & Marsal, C., Pyrolyse de l'acétylène sous l'action d'un laser à gaz carbonique. C.R. Acad. Sci. C, 275 (1972) 1153–5.
- 29. Lhote, J. & Pound, G. M., Reconsideration of nucleation theory. J. Chem. Phys., 36 (1962) 2080-5.
- Tougne, P., Hommel, H., Legrand, A. P., Herlin, N., Luce, M. & Cauchetier, M., Evolution of the structure of ultrafine SiC laser formed powders with synthesis conditions. *Diamond and Related Materials*, in press.