X-Ray Data for New Y-Si-Al-O-N Glass Ceramics

K. Liddell, H. Mandal & D. P. Thompson

Materials Division, Department of Mechanical, Materials & Manufacturing Engineering, University of Newcastle, Newcastle upon Tyne, UK

(Received 18 April 1996; accepted 23 July 1996)

Abstract

Since the 1970s an increasing number of crystalline oxynitrides have been observed as grain boundary phases in sialon ceramics. In particular, the wellknown four- and five-component phases in the Y-Si-Al-O-N system have been accepted as the total picture in this system and the potential for new phases has not been considered. However, with further development of sialon glasses and glass ceramics, post-preparative heat-treatment has revealed a number of previously uncharacterised crystalline phases occurring particularly at temperatures below 1200°C. Three such phases are discussed, Iw, Q and D, all of which have been observed previously by other researchers but without X-ray diffraction data; Q-phase occurs in some rare earth as well as yttrium sialon systems. All these phases can be produced only within a limited temperature range and are critically dependent on starting composition and heat-treatment temperature, so the present data will complement those already existing for devitrified sialon glass products, with potentially more phases vet to be identified. © 1997 Elsevier Science Limited. All rights reserved.

1 Introduction

Figure 1 shows the well-established crystalline phases in the Y-Si-Al-O-N system. It can be seen that there are no ternary Y₂O₃-Al₂O₃-SiO₂ compounds, nor any quaternary Y-Al-O-N phases. Those that do occur lie either along the Y₂O₃-Al₂O₃ join or are formed in the Y-Si-O-N system, with the associated ranges of solid solution into the five-component system formed by Si,Al and O,N substitution. The only five-component phase hitherto established in the Y-Si-Al-O-N system is Y₂SiAlO₅N, known as B-phase, which lies along the line joining YSiO₂N and YAlO₃, and is found at temperatures below 1150°C. It was originally studied by Rae¹ and was thought to be a point composition; later results,

however, showed it to be part of a solid solution extending approximately from 40-70 mol% YAlO₃.² In contrast to MSiO₂N-type wollastonites (M=Y,Ln), B-phase exhibits perfect hexagonal symmetry without stacking faults, and unit cell dimensions are plotted in Fig. 2. Crystalline B-phase can be prepared together with some residual glass, from more SiO₂-rich compositions in the glass-forming region. Heat treatment studies have been carried out and are reported elsewhere,³ but it has been observed that as B-phase decomposes, a second, apparently structurally related, phase occurs alongside it or with accompanying wollastonite. This phase, designated I_w, was first observed using SEM techniques by Leng-Ward & Lewis^{4,5} as a result of heat treating Y-Si-Al-O-N glasses, particularly those with composition $Y_{1.04}Si_{1.27}Al_{1.27}(O,N^{0-30})$ (i.e. 0–30 eq\% N). A Y:Si:Al ratio of 5:3:2 was established, but no X-ray data were reported.

Part of the yttrium sialon glass-forming region has been investigated by Dinger and co-workers⁶ who studied the crystallisation of glasses near the Y_2O_3 –SiO₂–AlN plane. This work involved mainly the formation of y- and δ -yttrium silicates, but an additional phase was observed at temperatures around 1200°C which the authors calculated to have the composition $YSi_2AlO_4N_2$. Electron diffraction data suggested an orthorhombic unit cell with dimensions $a = 23 \cdot 1$ Å, $b = 5 \cdot 01$ Å, $c = 8 \cdot 06$ Å. The high nitrogen content of this phase was explained by the abundance of silicates forming from the original composition of $Y_{0.26}Si_{0.30}Al_{0.11}ON_{0.11}$.

Analysis of the crystalline products resulting from heat treatment studies in the yttrium and rare earth sialon systems has revealed that phase relationships and their stability ranges are dependent not only on temperature and composition but also on cation size; while some phases are stable throughout the whole lanthanide series (e.g. M₅Si₃O₁₂N (apatite), M₄Si₂O₇N₂ (J-phase)), others are stable for either the larger (~La–Dy) or the smaller (~Dy–Lu) cations,

782 K. Liddell et al.

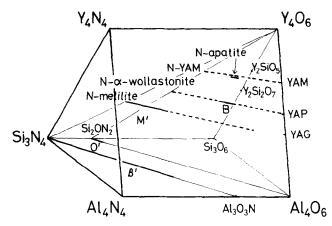


Fig. 1. Crystalline phases in the Y-Si-Al-O-N system.

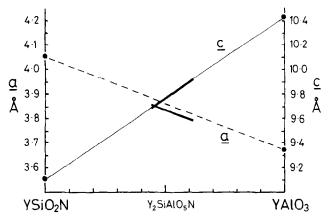


Fig. 2. Unit cell dimensions for B-phase in the range YSiO₂N-YAlO₃.

but not throughout the whole series. Examples the larger cation phases are: MSiO₂N, M = La-Gd (wollastonite); $M_3Si_3Al_3O_{12}N_2$, M =La-Dy (U-phase); $M_4Si_9Al_5O_{30}N$, M = La-Nd, (W-phase);^{9,10} smaller cation series are: M₃Al₅O₁₂, M = Dy-Lu (garnet) and M_2SiAlO_5N , M = Dy-Lu, (B-phase).9 From these data it can be seen that Dy lies at the unstable end of several of the series and since Y has an ionic radius (0.9 Å) close to Dy, it is expected, and has indeed been shown, that yttrium would also occur in phases at both ends of the rare earth series, with limited stability in some cases. Hence there is more possibility of finding new oxynitridie phases in the Y-Si-Al-O-N (or mid Ln) system than at either end of the Ln-Si-Al-O-N systems.

2 Experimental

Samples were prepared by melting compositions from appropriate mixtures of the following powders: Si₃N₄ (Grade LC10 — HC Starck, Berlin); Al₂O₃ (Grade A17 — Alcoa Chemie Gmbh); SiO₂ (Analar Grade — BDH Chemical Ltd); (Y,Ln)₂O₃ (99.9% — Rare Earth Products). Powders were mixed by hand in isopropanol and uniaxially

pressed into 5-20 g pellets; these were melted at 1650-1750°C in N₂ in a graphite element furnace or a graphite induction furnace for 30 min using a graphite crucible lined either with BN alone or with a 50/50 BN/Si₃N₄ powder mix.

Heat treatment was carried out in a molybdenum-wound vertical furnace, or a silicon carbide horizontal furnace in N₂ at various temperatures in the range 1000-1400°C. Crystalline products were identified by means of a Hägg-Guinier focusing camera and Cu $K\alpha_1$ or Fe $K\alpha_1$ radiation, the latter being particularly helpful for Dy-containing samples, since the intensity of fluorescent scattering is high with Cu radiation but negligible with Fe. Subsequent microstructural studies were carried out on a Camscan S4-80DV scanning electron microscope equipped with a Link energy dispersive X-ray analysis (EDX) system. Electron diffraction patterns were obtained using transmission electron microscopy using a JEM 100CX instrument.

3 Results

3.1 I_w-phase

This phase, I_w , was first observed using SEM techniques by Leng-Ward and Lewis^{4,5} as a result of heat treating yttrium sialon glass samples, particularly those with composition $Y_{1.04}Si_{1.27}Al_{1.27}(O, N^{0-30})$ (i.e. 0–30 eq% N). No X-ray data were reported, but a Y:Si:Al ratio of 5:3:2 was determined. Preliminary preparations at Newcastle¹⁰ gave very characteristic microstructures (Fig. 3) and strong lines close to B-phase positions, but the X-ray diffraction pattern often showed B-phase as a major constituent, so that I_w was thought to be merely a second B-phase, consistent with Leng-Ward's EDX composition and lying on the same line of cation ratio Y:(Si,Al) 1:1 (with residual glass). Speculative glass compositions

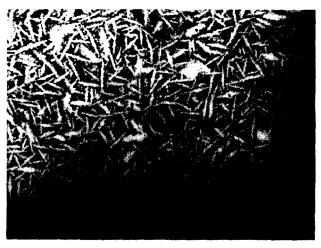


Fig. 3. Back-scattered electron image of I_w-phase.

 $Ln_3Si_3Al_3(O,N^{5,10})$ where Ln = Nd, Dy, Yb were prepared and heat treated at 1150°C to determine whether this phase extends into the lanthanide series; no equivalent was found. The purest sample of I_w obtained in the present work, i.e ~90% with Q-phase and a trace of YAG, was from the starting composition $Y_3Si_3Al_2O_{12:15}N_{0:90}$ (10 eq% N) heat treated at 1150°C for 64 h, and X-ray diffraction data are listed in Table 1. Examination of the positions of the strongest lines shows a hexagonaltype sub-cell similar to B-phase (Table 2) and the wollastonites and if the mean position of doublets is used, unit cell dimensions of this sub-cell correspond to a = 3.781, c = 10.06 Å. Figure 2 shows the variation of sub-cell dimensions with (Si,Al) and (O,N) substitution and if the measured values are plotted they correspond exactly on this graph

to the composition of $Y_2Si_{0.57}Al_{1.43}O_{5.43}N_{0.57}$. This composition, with an Si: Al ratio of approximately 3:7, is quite different from that proposed by Leng-Ward and Lewis^{4,5} which is 6:4. The nitrogen content (10 eq%) in the starting mixture, however, is in better agreement, i.e. from the unit cell plot the present samples give 14 eq% N, while Leng-Ward reckoned 5-10 eq\% N. When taking into account the other phases occurring during heat-treatment experiments, 11 either Si: Al ratio (3:7 or 6:4) is feasible, such that when B or I_w phases decompose, wollastonite and YAG remain. EDX analysis carried out on this sample shows a Y:Si:Al ratio of 4.5:3.5:2 which is close to Leng-Ward's analysis of 5:3:2. It would appear. therefore, that the composition of I_w does not lie on the YSiO₂N-Y₂SiAlO₅N-YAlO₃ line, and

Table 1. X-ray diffraction data for I_w-phase, Y_n(Si,Al)₃(O,N)₉

hkl	d_{calc}	d_{obs}	I_{obs}	hk l	\mathbf{d}_{calc}	d_{obs}	I_{obs}
100	11.07	11.04	13	431	2.151	2.151	<1
001	9.858	9.867	2	430	2-133	2.132	<1
011	7.037	7.032	1	34 <u>T</u>	2.077 }	2.077	<1
101	6.752	6.720	1	340	2.077 }		_1
200	5.534	5.548	<1	323	2.054	2.053	1
020	5.025	5.024	25	043	1.996		
002	4.929	4.929	2	342	1.991 (1.990	57
$10\overline{2}$	4.859 (4.853	<1	341	1.990 ∫	1.330	31
210	4.848 ∫		~1	305	1.895 (
120	4.576	4.574	t	304	1⋅890 ∫	1.891	44
021	4.477)	4.475	2	60 Ī	1.879	1.879	9
201	4.476 }		2	315	1.862	1.862	1
121	4.281	4.289	1	314	1.857		_
102	4.215	4.209	<1	61 <u>T</u>	1.847	1.845	2
121	4.031	4.034	1	325	1.773	1.779	2
220	3.720	3.723	1	324	1.769	1.769	25
30Ī	3.693	2 (00	1	621	1.760	1.759	3
300	3.689	3.688	1	053	1.715		
221	3.637	3.637	2	$35\overline{2}$	1.712	1 711	,
022	3.519	3.517	5	351	1.711	1.711	1
221	3.342	3.337	1	060	1.675	1.675	1
003	3-286	3.277	26	$33\overline{5}$	1.649	1.654	1
$30\overline{2}$	3.266)			334	1.646		
301	3.258	3.266	26	006	1.643)		
031	3.172	2.170	.1	631	1.639	1.640	4
$22\bar{2}$	3.170	3.172	<1	$60\overline{4}$	1.633	1.631	3
013	3.123)	2.115	10	602	1.329	1.628	1
312	3.106	3.115	10	016	1.621	1.619	1
311	3.099	3.104	15	$6\overline{1}\overline{4}$	1.612	1.612	3
131	3.001	3.005	1	612	1.608		
$32\overline{1}$	2.976)			026	1.562	1.559	7
320	2.974	2.974	1	$62\frac{3}{4}$	1.553	1.555	<1
113	2.873	2.876	1	622	1.550	1.552	13
$12\frac{3}{3}$	2.774	2.775	1	345	1.513	1.514	1
023	2.750	2.747	100	344	1.510	1.509	17
$32\frac{3}{2}$	2.738			$64\overline{1}$	1.505	1.505	6
321	2.734	2.735	100	063	1.492	1.492	7
$31\bar{3}$	2.629	2.630	<1	$36\overline{2}$	1.490		•
040	2.513	2.513	25	361	1.490	1.490	20
004	2.646	2.462	1	036	1.475		
140	2.450			$63\overline{4}$	1.468	1.471	1
421	2.450	2.451	<1	632	1.465	1 7/1	,
322	2.390	2.390	<1	046	1.375	1.373	7
331	2.336	2.336	1	$6\overline{4}\overline{4}$	1.369	1.370	1
303	2.251	2.252	<1	642	1.367	1.369	10

Monoclinic: a = 11.2729 Å, b = 10.0503 Å, c = 10.0405 Å, $\beta = 100.95^{\circ}$.

784 K. Liddell et al.

hkl	d _{obs}	I _{obs}	hkl	d _{obs}	Iobs
002	4.8748	26	114	1.5083	15
100	3.3291	55	106	1.4593	16
101	3.1474	18	204	1.3739	13
102	2.7484	100	107	1.2806	1
004	2.4358	18	210	1.2579	6
103	2.3241	1	211	1-2473	<1
104	1.9651	42	116	1.2402	2
110 112	1·9211 1·7873	39 24	$\left. \begin{array}{c} 008 \\ 212 \end{array} \right\}$	1.2182	21
105	1.6804	1	206	1.1625	8
200	1.6637	7	108	1.1444	5
201	1.6393	1	214	1.1181	17
202	1.5741	16	300	1.1097	3

Hexagonal: a = 3.8421(4) Å, c = 9.7464(10) Å.

that the wollastonite-type of structure, albeit increasingly distorted, must extend into an additional dimension towards lower nitrogen-containing compositions while preserving the higher Si: Al ratio.

Figure 4 shows the hexagonal sub-cell of B-phase with the unit cell parameter of 3.78 Å represented by the distance between the lattice points; the third dimension of 10 Å lies perpendicular to this plane. If the unit cell is extended to more than one basic unit in the (001) plane, the weak superlattice lines of I_w-phase index on the monoclinic cell (dotted) of approximate dimensions a = 11.28 Å, b = $10.07 \text{ Å}, c = 10.02 \text{ Å}, \beta = 101.0^{\circ}, \text{ i.e. a multiple of}$ three units in each direction. A small variation in unit cell dimensions is observed between samples and those quoted in Table 1 are a = 11.2729, b =10.0503, c = 10.0405 Å, $\beta = 100.95^{\circ}$; examination of indexing for absent reflections shows only 0k0 lines (k odd) missing, establishing a space group of P2₁. Due to the low intensity of superlattice lines on the diffraction pattern and the number of overlapping reflexions, only the strongest lines corresponding to the hexagonal cell are listed below 2.0 Å.

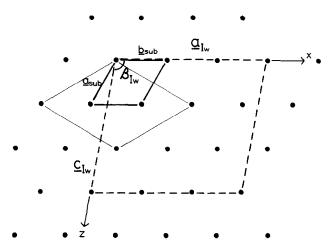


Fig. 4. Unit cell of I_w-phase with pseudo-hexagonal lattice.

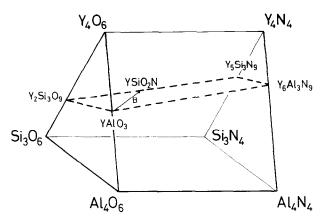


Fig. 5. $Y_n(Si,Al)_3(O,N)_9$ plane in the Jänecke prism.

There remains yet some speculation into the composition of I_w-phase. Since the sialon wollastonite structures all consist of three-membered (Si,Al)₃(O,N)₉ rings separated by layers of larger cations,⁷ the similarity of the diffraction pattern of I_w would suggest some variation of this arrangement. Figure 5 shows the position of the Y_n(Si,Al)₃(O,N)₉ plane in the Jänecke prism; an oxygen-rich wollasonite-type composition would therefore lie in the triangle YSiO₂N-YAlO₃-Y₂Si₃O₉. If the (Si,Al)₃(O,N)₉ ring structure is to be preserved, for any given Si: Al ratio the charge difference resulting from oxygen substitution for nitrogen can be compensated for by a reduction in yttrium. Since the total unit cell contents of the B-phase sub-cell are Y₂SiAlO₅N, those of I_w must be a maximum of nine times this sub-cell (Fig. 4), i.e. Y₁₈(Si,Al)₁₈(O,N)₅₄. On considering the two EDX Si: Al ratios 3:2 and 3.5:2 and a nominal nitrogen content of 10 eq%, these would give compositions $Y_{15.64}Si_{10.8}Al_{7.2}O_{50.28}N_{3.72}$ and $Y_{15.42}Si_{11.46}Al_{6.54}O_{50.28}$

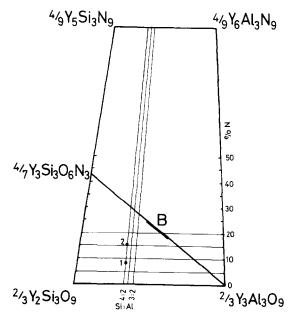


Fig. 6. $Y_n(Si,Al)_3(O,N)_9$ plane showing possible I_w compositions: (1) $Y_{15}Si_{12}Al_6O_{51}N_3$ and (2) $Y_{16}Si_{12}Al_6O_{48}N_6$.

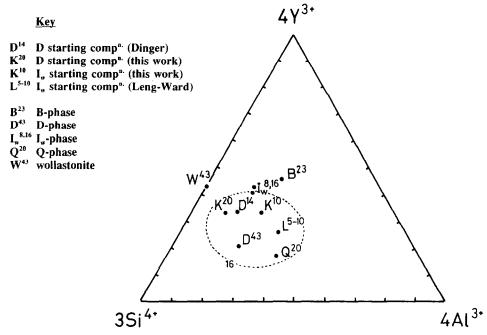


Fig. 7. Starting and final compositions of I_w, Q and D phases (eq% N superscripted).

N_{3.72} respectively. Using integer approximations for such expressions, two possible compositions result:

(1)
$$Y_{15}Si_{12}Al_6O_{51}N_3$$
 (8·11 eq% N) and

(2)
$$Y_{16}Si_{12}Al_6O_{48}N_6$$
 (15.79 eq% N)

These are plotted on Fig. 6, a representation of the $Y_n(Si,Al)_3(O,N)_9$ plane showing lines of selected Si:Al and O:N ratios, and also on Fig. 7 which shows the starting and final compositions (eq% N superscripted) of each of the phases discussed in this work. Relative to the wollastonite structures either three or two of the yttrium sites remain unoccupied. Preparative techniques must be optimised and further structural data collected before a full structure determination of I_w -phase can be carried out.

3.2 Q-phase

This phase was first observed during post-preparative heat treatment 10,12 of β or α - β sialon compositions densified with rare earth additives; designated Q, it formed alongside B-phase, YAG or U-phase at $1000-1150^{\circ}$ C. In these products the maximum amount observed was about 30%, depending on the system, but mixed $Y_2O_3 + Dy_2O_3$ additions gave the most stable product, i.e. up to 1250° C. A typical microstructure of yttrium Q-phase heat treated at 1100° C is shown in Fig. 8.

Subsequent observations have been made during the heat treatment of compositions lying on the 20 eq% N plane in the Y-Si-Al-O-N system, when this phase was prepared apparently pure except for an unknown small amount of residual glass. It

occurs near the composition YSi₂Al₂O_{6.8}N₁₋₁₃; small deviations from this starting mixture show a decrease in the Q-phase content in all cases, confirming a point composition. EDX analysis also suggests a cation ratio Y:Si:Al of about 1:2:2, although the nitrogen content may be greater than 20 eq% N, which would explain accompanying traces of mullite or yttrium silicate. Figure 7 shows the glass-forming region on the 16 eq% N plane in the Jänecke prism; the Q-phase composition (Q^{20}) is shown. The same composition has been prepared in other rare earth systems to explore its stability; Q-phase was found to be present in the smaller rare earth samples (Ln=Dy-Yb), but not in the larger cation-containing (La-Gd) systems where U-phase predominates. As mentioned previously U-phase is stable in the rare earth series from La to Dy,8 and YAG occurs from Dy to Yb. However, since Y and Dy lie at the unstable end of each of these ranges, Q-phase is more easily

Fig. 8. Back-scattered electron image of yttrium Q-phase.

786 K. Liddell et al.

Table 3. X-ray diffraction data for Q-phase, YSi₂Al₂O_{6.8}N₁₋₁₃

d_{obs}	$sin^2\theta$	\mathbf{I}_{obs}	d_{obs}	$sin^2\theta$	I_{obs}	d_{obs}	$sin^2\theta$	\mathbf{I}_{obs}
8-1948	0.00884	100	2-1940	0-12327	2	1.5199	0.25684	62
6.6396	0.01346	6	2.1807	0.12477	30	1.5091	0.26053	27
5.4097	0.02028	2	2.1108	0.13318	43	1.4993	0.26397	13
4.5601	0.02853	6	2.0485	0.14140	10	1.4943	0.26574	15
4.0964	0.03536	5	2.0283	0.14423	16	1.4703	0.27447	19
3.8371	0.04030	6	2.0192	0.14553	21	1.4652	0.27639	3
3.7414	0.04239	13	1.9601	0.15444	25	1.4391	0.28649	2
3.3239	0.05371	87	1.9354	0.15841	5	1.4377	0.28706	3
3.2108	0.05755	1	1.9194	0.16105	7	1.4291	0.29054	20
3.0821	0.06246	78	1.8884	0.16640	21	1.4023	0.30175	8
3.0309	0.06459	l	1.8643	0.17072	7	1.3816	0.31087	2
2.9343	0.06891	15	1.8413	0.17501	4	1.3715	0.31545	6
2.8788	0.07160	1	1.8293	0.17732	15	1.3650	0.31848	27
2.7410	0.07897	6	1.8105	0.18105	24	1.3601	0.32077	11
2.7313	0.07954	22	1.7849	0.18624	17	1.3512	0.32498	8
2.7195	0.08023	56	1.7780	0.18769	4	1.2998	0.35121	4
2.6140	0.08683	51	1.7689	0.18964	11	1.2986	0.35184	5
2.5820	0.08900	82	1.7444	0.19500	15	1-2907	0.35618	7
2.5114	0.09408	15	1.6650	0.21404	47	1.2799	0.36220	7
2.4913	0.09560	8	1.6555	0.21651	2	1.2725	0.36646	8
2.4452	0.09924	19	1.6386	0.22098	1	1.2459	0.38224	3
2.3206	0.11019	4	1.6291	0.22358	8	1.2259	0.39481	4
2.2892	0.11322	3	1.6238	0.22505	14	1.2246	0.39569	2
2.2804	0.11410	2	1.6122	0.22830	8	1.2236	0.39629	6
2.2039	0.12216	23	1.5562	0.24500	8	1.2105	0.40492	19

detectable in these systems. Although the strong lines of the X-ray patterns are obvious in the different rare earth systems, the weakest lines are more difficult to define with certainty. Data have been collected for Y, Dy, Er and Yb products using both Cu and Fe radiation in order to reduce the fluorescent scattering in the most susceptible products, particularly Dy, and the diffraction pattern of the yttrium sample is shown in Table 3. Attempts to index the X-ray pattern of Q-phase have proved hitherto unsuccessful.

3.3 D-phase

This phase was first observed on heat-treatment of yttrium sialon glasses of Y:Si:Al atomic ratio 28:42:16 containing 17 or 20 eq% N. As with Q-phase, several more related compositions were prepared and heat-treated at various temperatures to maximise the proportion of D-phase present in the material. A typical starting composition of a product containing a significant amount of D (K²⁰) is shown in Fig. 7; Dinger's starting composition is marked D14. It was seen from X-ray results after heat-treatment at 1150°C that D-phase coexists usually with y-Y₂Si₂O₇, or occasionally with another silicate such as the δ - or β - form. Where these are the only crystalline products, D would appear to be rich in nitrogen (perhaps approaching 40 eq%) since most of the starting compositions contain 20 eq% N; however in many cases there also occur nitrogen-containing phase(s), which would lower the apparent nitrogen content of D-phase. It was not possible to establish the cation ratio Y:Si:Al since the grain size was too small for EDX analysis to be meaningful. Nevertheless, a reasonably reliable diffraction pattern has been obtained (Table 4 (y=overlap with y-Y₂Si₂O₇)), which is quite distinct from the accompanying very diffuse y-Y₂Si₂O₇ pattern. Because of the strong line at 11.6 Å this phase may be misinterpreted as I_w-phase, but both have been found to coexist after heat treatment at 1150°C for 1000 h. Indexing of the diffraction pattern has not yet been achieved although two dimensions of 23·1 and 5·01 Å are in good agreement with those reported by Dinger et al.;6 the third dimension could not be confirmed by recent calculations. Dinger's phase was formed from a glass of composition $Y_{0.26}Si_{0.30}Al_{0.11}ON_{0.11}$, containing 14 eq% N, from which y- and δ - yttrium silicates also formed during heat-treatment. These authors calculated the composition of D to be YSi₂AlO₄N₂ (43 eq% N); this lies outside the glassforming region and produces Si₃N₄ and B-phase with glass on initial firing. Heat treatment at 1150°C for 12 h gives I_w and B phases and no D-phase. The calculated composition has a Y:Si: Al ratio very similar to that of W-phase^{9,10} in the rare earth systems, albeit with very different O: N: it is possible therefore that the structures of D- and W- phases are related in some way whilst remaining distinct from one another.

 \mathbf{I}_{obs} d_{obs} $sin^2\theta$ \mathbf{d}_{obs} $sin^2\theta$ $sin^2\theta$ I_{obs} d_{obs} I_{obs} 11.6 0.00444100 2-2481 0.11740 13 1.6591 0.21555 19 6.9624 0.01224 <3 2.20820.121691.6537 0.21697 5 5.3404 0.020815 2.1993 0.12267 9 1.6509 0.217719 4.899142 0.024722.1951 0.123159 1.6220 0.22555 11 4.5969 0.02808 72 1.59923 2.0990 0.13468 11 0.23202 < 10 4.1985 0.033663 2.0898 0.1358645 1.59033 0.23462 39 21 1.9957 4.11370.03506 0.148980.242845 < 3 1.5631 47 1.9494 3.8512 0.040010.1561310 1.5608 0.243576 3.7976 0.04114 68 1.9372 0.158114 1.5569 0.244795 1.9141 3.6894 <3 57 0.043590.161953 1.5489 0.247333.6279 0.04508 <3 1.9039 0.16368 <3 1.54613 0.24822 10 57 3.4352 0.050281.9001 0.1643586 1.5426^{9} 0.2493410 79 3.3956 0.05146 1-8688^y 0.16990 <10 1.5295^y 0.25364 68 3.2909 1-8561y 0.05479 11 0.17224< 10 1.5145 0.2587154 3.0979 0.06183 1.8374 0.17575 1.4847 0.26920 43 5 5 3.00170.06586100 1.8114 0.180844 1.4658 0.2761813 1.4545 0.28046 2.9282 80 1.8004 4 29 0.06920 0.183062.8877 0.07116 1.7959 0.18398 12 1.4136 0.29693 5 2.8172 0.07476 60 1.7924 0.18468 1.4019 0.301934 72 5 2.7846 0.07652 13 1.7697 0.18946 1.3715 0.31547 2.7723 1.7674 0.18996 4 0.31754 0.077201.3670 6 2.7568 0.0780732 1.7468y 0.19445<10 1.3657 0.31815 4 4 7 2.7035 1.7353^y 0.19706 0.32244 0.0811863 < 5 1.3566 2.6869 0.08219 43 1.7322 0.19776 1.3541 0.32362 0.08404 1.71820.32536 19 2.6572 7 0.200981.3504 5 2-5315 0.09259 40 1.7155 0.201631.3125 0.3444515 30 1.6974^y 0.20593 1.3046 0.34861 5 2.5030 0.0947126 2.4500 0.09885 21 1.6764 0.21113 1.29463 0.35405 < 5 1.2917 0.35562 4 2.2998 0.1121920 1.6663 0.2137017

0.21421

Table 4. X-ray diffraction data for D-phase, YSi₂AlO₄N₂

4 Conclusions

0.11461

2.2753

From all these crystalline phases described, Q and I_w are glass ceramics, with Q lying well inside the glass-forming region of the Y-Si-Al-O-N or Y-Ln-Si-Al-O-N systems with relatively high Al content, while I_w lies on the edge with almost maximum yttrium content. D and B phases lie outside the glass-forming region. Each phase is very sensitive to small changes in composition, temperature and probably duration of heat treatment, and multiphase products are easily formed on crystallising glass materials. Hence identification and characterisation of any minor phases are necessary in establishing more fully the phase relationships in these sialon systems.

<3

1.6643

Acknowledgements

The authors wish to acknowledge financial support for this work under the EC BRITE-EURAM programme, contract No. BRE2-CT92-0272.

References

1. Rae, A. W. J. M., Yttrium silicon oxynitrides. PhD Thesis, University of Newcastle upon Tyne, 1976.

- Spacie, C. J., Characterisation and heat treatment of sialon ceramics. PhD Thesis, University of Newcastle upon Tyne, 1984.
- 3 Liddell, K., Mandal, H. & Thompson, D. P., J. Mater. Sci. (1996) to be published.
- Leng-Ward, G. & Lewis, M. H., Oxynitride glasses and their glass-ceramic derivatives. In Glasses and Glass-Ceramics, ed. M. H. Lewis. London, Chapman & Hall, 1989, 106-155.
- Leng-Ward, G. & Lewis, M. H., Crystallisation in Y-Si-Al-O-N glasses. *Materials Science & Engineering*, 71 (1985) 101-111.
- 6. Dinger, T. R., Rai, R. S. & Thomas, G., Crystallization behaviour of a glass in the Y₂O₃-SiO₂-AlN system. *J. Am. Ceram. Soc.*, 71(4) (1988) 236-244.
- Korgul, P. & Thompson, D. P., Crystallisation behaviour of N-α-wollastonite glasses. *Brit. Ceram. Proc., Complex Microstructures*, 20 (1989) 69–80.
- Grins, J., Käll, P. O., Kiddell, K., Korgul, P. & Thompson, D. P., Sialon U-phase; an alternative crystalline grain boundary phase for β sialon ceramics. In New Materials and their Applications II, 1990, pp. 427–434.
- Mandal, H., Thompson, D. P. & Ekström, T., Heat treatment of Ln-Si-Al-O-N glasses. In *Materials for Advanced Technology Applications*, ed. M. Buggy & S. Hampshire. Trans Tech Publications, Zurich, 1991, pp. 187-204.
- Mandal, H. & Thompson, D. P., New oxynitride glass ceramics. In *II International Ceramic Congress Proceedings, Vol 1 Traditional Ceramics*, ed. M. L. Öveçoğlu & H. Yaparlar. Turkish Ceramic Society, 1994, pp. 366–377.
- 11. Liddell, K. & Thompson, D. P., to be published.
- Mandal, H., Thompson, D. P. & Ekström, T.. Heat treatment of sialon ceramics densified with higher atomic number rare earth and mixed yttrium/rare earth oxides. In *Special Ceramics* 9, London, 1990, ed. R. Stevens. Institute of Ceramics, UK, 1992, pp. 97–104.