

Journal of the European Ceramic Society 24 (2004) 409-412

www.elsevier.com/locate/jeurceramsoc

SiC-B₄C composites for synergistic enhancement of thermoelectric property

Masato Uehara*, Ryosuke Shiraishi, Atsushi Nogami, Naoya Enomoto, Junichi Hojo

Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan

Abstract

SiC-B₄C composites were fabricated by hot pressing of β -SiC and B₄C powder mixture. The Seebeck coefficient was determined at 300–900 °C in air. The SiC-B₄C composites exhibited very high value. Especially, the Seebeck coefficient of SiC-30wt. %B₄C composite was about 700 μ /K at 900 °C. Such a high Seebeck coefficient is very attractive. Monolithic SiC and B₄C had the Seebeck coefficient of 100–400 μ V/K, respectively. In SiC-B₄C composite system, the Seebeck coefficient had been increased by the combination of SiC and B₄C. In TEM observation, many stacking faults were observed in SiC-B₄C composites. The presence of stacking faults may be one reason for the high Seebeck coefficient of SiC-B₄C composite. © 2003 Elsevier Ltd. All rights reserved.

Keywords: B₄C; Composites; Grain size; Seebeck coefficient; SiC

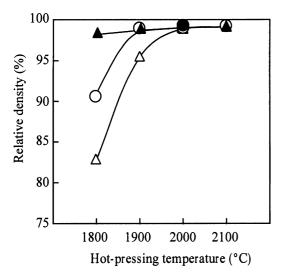
1. Introduction

Thermoelectric material is useful for direct conversion between thermal and electric energy. For this application, high-temperature semiconductors have been receiving an attention. Boron carbide is semiconductors, having a good stability in high temperatures. We noticed the possibility of SiC–B₄C composite as a thermoelectric material. It was reported that, in SiC–70wt.%B₄C eutectic composite fabricated by arc melting method, the Seebeck coefficient was very high 750 $\mu V/K$ around 800 °C.² However, the eutectic point is too high as about 2300 °C³ to produce the melt and the fine control of microstructure is difficult by the melting method.

In this work, SiC-B₄C composites were fabricated by hot pressing of powder mixture, and the sinterabilities, mechanical properties and thermoelctric properties were investigated.

2. Experimental procedure

β-SiC powder (Ibiden Co. Ltd., particle size 0.3 μm) and B_4 C powder (Rare Metallic Co. Ltd., particle size 1.3 μm) were mixed in a agate mortar. Al_2O_3 powder


(Nippon Aerosil, particle size 0.02 µm) was used as sintering aid. The mixed powder was hot-pressed using graphite mold for 0.5 h at 1800-2100 °C under uniaxial pressure of 50 MPa in Ar atmosphere. The hot-pressed bodies were polished with diamond abrasive. The bulk density was measured by the Archimedes method. The crystalline phases were identified by X-ray diffraction (XRD). The surface microstructure was observed by scanning electron microscopy (SEM) after etching with K₃Fe(CN)₆-NaOH aqueous solution. Thinned specimens were observed by transmission electron microscopy (TEM). The hardness and fracture toughness were determined by the Vickers indentation method at room temperature (load 10 kg), in which the Niihara's equation⁴ was used for calculation. The Seebeck coefficient was determined from the voltage generated by temperature gradient of about 10 °C at 300–900 °C in air.

3. Results and discussion

3.1. Sintering behavior

Fig. 1 shows the relative densities of SiC-30wt.% B_4C and SiC-70wt.% B_4C as a function of hot-pressing temperature. The relative density reached up to 99% at 2000 °C in SiC-70wt.% B_4C without additive. SiC-30wt.% B_4C was densified at a lower temperature of 1900 °C. The sintering aid was not necessarily

^{*} Corresponding author. E-mail address: uehara@cstf.kyushu-u.ac.jp (M. Uehara).

O 30wt%B4C (no additive) △ 70wt%B4C (no additive)
30wt%B4C (5wt%Al₂O₃) ▲ 70wt%B₄C (5wt%Al₂O₃)

Fig. 1. Change in relative density of SiC-B₄C composite with sintering temperature.

required because B₄C works as sintering aid for SiC and B₄C itself is sinterable without additive. The densification was promoted by addition of 5 wt.% Al₂O₃, and the relative density of SiC–30wt.%B₄C reached about 99% at 1800 °C. This may be due to a liquid phase sintering mechanism caused by the oxide additive.

3.2. Microstructure

Fig. 2 shows the SEM images of surface microstructure after chemical etching. The white region is assinged to SiC phase and the black region to B_4C phase. In SiC-30wt.% B_4C , SiC formed the network structure and B_4C was isolated in SiC matrix. In SiC-70wt.% B_4C , SiC was isolated in B_4C matrix. When Al_2O_3 was added, β -SiC was partially transformed into α -SiC, and rod-like SiC grains were observed. The rod-like grain growth may be due to the β - α transformation

during liquid phase sintering. Fig. 3 shows the TEM image of thinned specimen. The more plane defects like as grain boundary and stacking fault were observed in SiC-30wt.%B₄C than 70 wt.%B₄C.

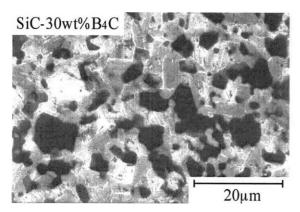

3.3. Mechanical properties

Fig. 4 shows the change in hardness and fracture toughness by addition of B₄C to SiC. The hot-pressing temperature was 2000 °C. Compared with monolithic SiC, the hardness was high in SiC–B₄C composites because B₄C has a higher hardness than SiC. However, the fracture toughness slightly decreased. The addition of Al₂O₃ increased the hardness of the composites, reaching about 30GPa, but the fracture toughness was not increased. These results indicate that B₄C inclusions are not effective to improve the fracture toughness of SiC. The increase in hardness by Al₂O₃ addition may be due to the bonding strength between grains of SiC and B₄C. With Al₂O₃ additive, rod-like SiC grains were formed, but gave no effect on the fracture toughness. In all samples, the crack deflection was not observed.

3.4. Thermoelectric properties

Fig. 5 shows the Seebeck coefficient of SiC–B₄C composites as a function of temperature. B₄C and B-doped SiC are known to be P-type semiconductors. The composites also had the P-type of semiconductivity. In 30 wt.%B₄C without additive, the Seebeck coefficient was the highest as about 700 μ V/K at 900 °C. Monolithic SiC sintered with Al₂O₃ additive had the Seebeck coefficient of 100–400 μ V/K. The Seebeck coefficient of B₄C (non-additive) was the same level. Compared with these data, the Seebeck coefficient had been increased by the combination of SiC and B₄C. The Seebeck coefficient was lower in 70 wt.%B₄C than in 30 wt.%B₄C, and decreased by Al₂O₃ addition.

The 30 wt.%B₄C composite exhibited the extremely high Seebeck coefficient, which is comparable to that of 70 wt.%B₄C eutectic composite reported by Goto et al.

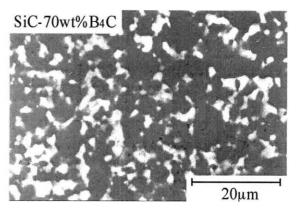


Fig. 2. SEM photographs of etched surface of SiC-B₄C composites (hot pressing: 2000 °C without additive).

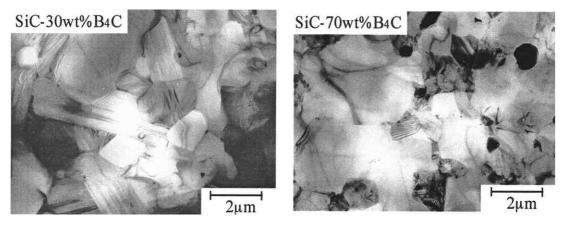


Fig. 3. TEM photograph of SiC-B₄C composite (hot pressing: 2000 °C without additive).

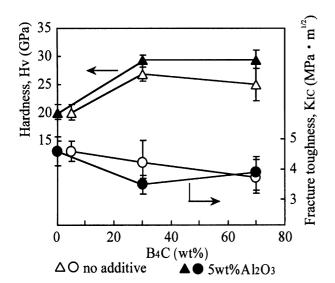
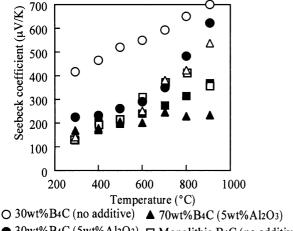



Fig. 4. Hardness and fracture toughness of SiC-B₄C composites (hot pressing: 2000 °C).

- 30wt%B4C (5wt%Al2O3) ☐ Monolithic B4C (no additive)
- △ 70wt%B4C (no additive) Monolithic SiC (5wt%Al2O3)

Fig. 5. Seebeck coefficient of SiC-B₄C composites (hot pressing: 2000 °C).

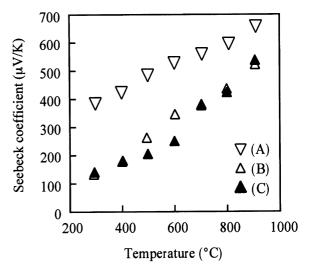


Fig. 6. Seebeck coefficient of SiC-70wt.%B4C composites (hot pressing: 2000 °C without additive).

although the composition was different. The Seebeck coefficient of SiC-B₄C composite increased with a rise of temperature. Especially, the temperature dependencies in 30 wt.%B₄C with Al₂O₃ additive and 70 wt.%B₄C without additive were very large. It was reported that the temperature dependencies of SiC was explained by the phonon drag effect relating to plane defects such as stacking fault in crystalline grains and grain boundaries.⁵ In 70 wt.%B₄C eutectic composite fabricated by arc melting method, the high Seebeck coefficient and the large temperature dependency were presumed to be related to the plane defects such as fine lamellar structure of eutectic composite and many stacking faults.² In the present work, the stacking faults in SiC and B₄C phases were also observed as shown in Fig. 3. The presence of stacking faults may be one reason for the high Seebeck coefficient of 30 wt. %B₄C.

The finer microstructure of 30 wt. %B₄C than 70 wt. %B₄C was caused by the starting powders and may affect the higher Seebeck coefficient. Therefore, 70 wt.%B₄C composites were fabricated by the other powders. Sample (A) was an in-site composite, which was fabricated by 30 nm β-SiC, 0.1 μm boron and 20 nm carbon powders. B₄C phase was formed by boron and carbon powder during hot pressing. (B) was prepared by 30 nm β-SiC and 1.3 μm B₄C powders. (C) was the earlier-mentioned sample in Fig. 5. The grain size of (A) was below 1 μm and the composite structure was finer than those of (B) and (C). The fine structure of (A) was caused by in-site reaction between fine powders during hot pressing, whereas B₄C powder used in (B) and (C) was not so fine. As shown in Fig. 6, the Seebeck coefficient of (A) was very high and comparable to 30 wt. %B₄C composite in Fig. 5. (B) was the same level to (C). The finer microstructure of (A) may affect its higher Seebeck coefficient as same as Fig. 5.

4. Conclusion

SiC–B₄C composites were fabricated by hot pressing of β -SiC and B₄C powder mixture. The relative density of sintered body reached above 99% at temperatures around 2000 °C without additive. The densification was promoted by Al₂O₃ addition and the

sintered body was densified at 1800 °C. Compared with monolithic SiC, the hardness increased in SiC–B₄C composite but the fracture toughness decreased. Al₂O₃ addition increased the hardness but had no effect to improve the fracture toughness. SiC–30wt.%B₄C composite exhibited the Seebeck coefficient of about 700 $\mu V/K$ at 900 °C. Such a high Seebeck coefficient is very attractive. In SiC–B₄C system, the high Seebeck coefficient may be associated with the fine defect structure, like as grain boundary and stacking fault.

References

- 1. Wood, C. and Emin, D., Conduction mechanism in boron carbide. *Phys. Rev. B*, 1984, **29**, 4582–4586.
- Goto, T., Ito, E., Mukaida, M. and Hirai, T., Microstructure and seebeck coefficient of SiC-B₄C eutectic ceramics. *J. Jpn. Soc. Powder and Powder Metallurgy*, 1994, 41, 1304–1307.
- 3. Secrist, D. R., Phase equilibria in the system boron carbide–silicon carbide. *J. Am. Ceram. Soc.*, 1964, **47**(3), 127–130.
- Niihara, K., Morena, R. and Hasselman, D. P. H., Evaluation of K_{IC} of brittle solids by the indentation method with low crack-toindent ratios. *J.Mater. Sci. Lett.*, 1982, 1, 13–16.
- Koumoto, K., Shimohigoshi, M., Takeda, S. and Yanagida, H., Thermoelectric energy conversion by porous SiC ceramics. J. Mater. Sci Lett., 1987, 6, 1253–1455.