

Journal of the European Ceramic Society 24 (2004) 2583-2589

www.elsevier.com/locate/jeurceramsoc

Microwave dielectric properties of $(1-x)\text{CeO}_2$ - $x\text{CaTiO}_3$ and $(1-x)\text{CeO}_2$ - $x\text{Sm}_2\text{O}_3$ ceramics

M.T. Sebastian^{a,b}, N. Santha^{a,b}, P.V. Bijumon^a, Anna-Karin Axelsson^{b,*}, Neil McN. Alford^b

^aCeramics Division, Regional Research Laboratory, Trivandrum 695019, India ^bPhysical Electronics and Materials, South Bank University, London SE1 OAA, UK

Received 18 May 2003; accepted 27 September 2003

Abstract

CeO₂–CaTiO₃ and CeO₂–Sm₂O₃ microwave dielectric ceramics have been prepared by a conventional solid state ceramic route. The dielectric ceramics are characterized by X-ray diffraction, SEM, Raman and microwave methods. Ceria has a relative dielectric constant, ε_r , of 23, high dielectric quality factor×frequency product, $Q \times f$ up to 60,000 GHz with high temperature coefficient of resonant frequency, τ_f , of –53 ppm/°C. The addition of CaTiO₃ and samarium oxide leads to a zero temperature variation of resonant frequency. The relative dielectric constant increases and Q decrease with CaTiO₃ addition and the τ_r changes from a negative to a positive value. Sm₂O₃ addition of up to 50 mol% increases Q, decreases ε_r and improves the τ_f . The microwave dielectric properties are measured at low temperatures down to 20 K. The effect of addition of 1 mol% of various rare earth oxides on the microwave dielectric properties of ceria has also been investigated.

© 2003 Elsevier Ltd. All rights reserved.

Keywords: CeO₂; Sm₂O₃; CaTiO₃; Microwave ceramics; Dielectric resonators

1. Introduction

Several research groups have developed microwave dielectric resonators (DRs) with satisfactory dielectric properties.¹ Ceramic materials for DR applications should have high quality factor (Q), high relative permittivity (ε_r) and the stability of these parameters in the working temperature and frequency ranges. Ceria-based materials have been intensively investigated as catalysts, structural and electronic promoters of heterogeneous catalytic reactions and oxide ion conducting solid electrolytes in electrochemical cells.² Recently we showed ceria to be a good dielectric resonator material with a $\varepsilon_r = 23$, quality factor $(Q \times f)$ of about 60,000. We also demonstrated that the addition of 1 mol% CaCO₃ increases the Q.³ But the temperature coefficient of resonant frequency (τ_f) of ceria has a large negative value (-53 ppm/°C), which precludes its use in practical applications. It is possible to achieve temperature com-

E-mail addresses: mailadils@yahoo.com (M.T. Sebastian), alfordn@lsbu.ac.uk (A.-K. Axelsson).

pensation by preparing a solid solution phase between compounds having positive and negative τ_f values. ^{4–8} The perovskite CaTiO₃ has ⁹ a high positive value of τ_f (800 ppm/°C). In the present work we report the microwave dielectric properties of ceria with different amounts of additives such as CaTiO₃ and Sm₂O₃ which exhibit a positive values of $\tau_{f'}$. The effect of various rare earth oxides on the microwave dielectric properties of ceria has also been investigated.

2. Experimental

The dielectric samples were prepared by a conventional solid-state ceramic route. CeO_2 , Sm_2O_3 , $CaCO_3$, and TiO_2 with purity >99.9% were used as starting materials. Cerium oxide and Sm_2O_3 were calcined at 800 °C for 3 h to remove volatile impurities. The powders were weighed according to the compositions $(1-x)CeO_2-xSm_2O_3$ (x=0.005, 0.01, 0.10, 0.30, 0.50, 0.70, 0.80, 0.90 and 0.95) and $(1-x)CeO_2-xCa-TiO_3(x=0.01, 0.02, 0.04, 0.06, 0.08, 0.10)$ and mixed in an agate mortar using distilled water and then dried.

^{*} Corresponding author.

The mixed powder was calcined at $1200\,^{\circ}\mathrm{C}$ for 4 h. In the $\mathrm{CeO_2\text{--}Sm_2O_3}$ system, the samples with higher contents of $\mathrm{Sm_2O_3}$ decomposed or become fine powder on aging. To avoid this, 0.5 wt.% CuO was added to the calcined powder for x = 0.90 and 0.95. A 5% PVA solution was added to the powder as a binder and the slurry was dried. The resulting powders were again ground well and then uniaxially pressed into pellets 14 mm in diameter and about 7 mm in height. These pellets were sintered at $1600\text{--}1650\,^{\circ}\mathrm{C}$ for 4 h. The preferred sintering temperatures were chosen to be the temperature resulting in the highest sample density. Samples of ceria with 1 mol% of dopant (Nd₂O₃, Sm₂O₃, Eu₂O₃, Gd₂O₃ and Er₂O₃) were also prepared as described above.

Powder X-ray diffraction (XRD) patterns of (1-x) CeO₂–xSm₂O₃ and (1-x)CeO₂–xCaTiO₃ were taken using Cu K_{α} radiation as a function of composition to investigate the crystalline structure. The density of the ceramic pucks was determined by the Archimedes method. Scanning electron micrographs were recorded from thermally etched samples using Hitachi SEM model No. S-4300.

Dielectric properties at microwave frequencies were measured in the 4-6 GHz frequency range. The endshorted method proposed by Hakki and Coleman¹⁰ and later modified by Courtney¹¹ was employed for the evaluation of the relative dielectric constant using the TE₀₁₁ mode. The dielectric quality factor of the samples was measured by the cavity method¹² using the $TE_{01\delta}$ resonant mode. The temperature coefficient of resonant frequency was measured by noting the response of the TE₀₁₁ mode with respect to temperature using the Hakki and Coleman method in the 20-80 °C region. The low temperature microwave dielectric properties were measured by placing the cavity on the cold head of a closed cycle Gifford McMahon ciyostat ("workhorse", Cryophysics, Abingdon, UK) and the microwave dielectric properties were determined using a vector network analyzer (HP8720C) in the temperature range 20–300 K. The Raman spectra from the sintered pucks were recorded using a Renishaw system 2000 microprobe with a 488 nm line of an Ar+ laser as exciting radiation with nominally <4.0 mW power incident on the sample surface. The laser line was focused onto the sample by a cylindrical microscope lens of ×50 magnification with a spot diameter of $3\pm1 \,\mu m$.

3. Results and discussion

3.1. (1-x) CeO₂-xCaTIO₃ $(0.1 \le x \le 0)$ ceramics

Pure CeO₂ has a cubic fluorite type of structure with space group Fm3m and has a density of 7.215 g cm⁻³

(JCPDS file no. 43-1002). It has $\varepsilon_r = 23$, $Q \times f > 60,000$ (at 6 GHz) and $\tau_f = -53$ ppm/°C.³

Fig. 1 shows the X-ray diffraction patterns recorded from (1-x) CeO₂–xCaTiO₃ indicating the single phase nature of the ceramics. Fig. 2a shows the scanning electron micrograph recorded from pure CeO₂ and Fig. 2b 0.9CeO₂–0.1CaTiO₃ ceramic. Pure ceria grains are large in size 20–25 μ m where as the 0.9CeO₂–0.1CaTiO₃ ceramic the grains are about 10 μ m in size although both sintered at the same temperature. The SEM picture also shows the single phase nature of the ceramics.

The Raman spectra of CaTiO₃-doped CeO₂ were measured for composites x < 0.06 and given in Fig. 3. Pure CeO₂ has a Raman active mode (F_{2g}) at 465 cm⁻¹ which is attributed to the symmetrical stretching mode of the Ce-O8 vibration making this mode suitable for detecting oxygen disorder. An increased addition of CaTiO₃ caused only a minor shift of the 465 cm⁻¹ mode from 465.6 to 465.3 cm⁻¹ and an increase in the linewidth (FWHM) from 10.6 to 12.1 cm⁻¹. The formed single phase is proceeded by substitution of Ce⁴⁺ in the lattice by Ti⁴⁺ and Ca²⁺ where it has been suggested in earlier FTIR study³ that Ti addition decreases anharmonicity in the lattice by decreasing multiphonon absorption and Ca increases anharmonicity.

The sintered densities of the specimens, relative to the $CaTiO_3$ content are plotted in Fig. 4. The density increases with a small addition of $CaTiO_3$ (x = 0.02), but with further addition of $CaTiO_3$, it decreases.

Fig. 5 shows the relationship between the ε_r and the composition (x) compared with those obtained by the logarithmic mixing rule $\ln \varepsilon_r = V_1 \ln \varepsilon_{r1} + V_2 \ln \varepsilon_{r2}$ where V_1 and V_2 are volume fractions of each component, ε_{r1} and ε_{r2} are their relative dielectric constant and ε_r is the

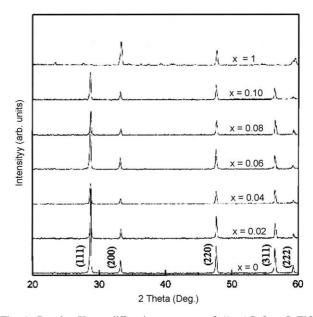
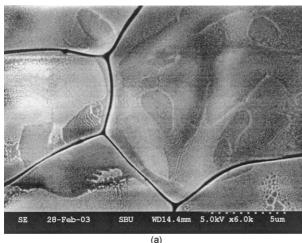



Fig. 1. Powder X-ray diffraction patterns of $(1-x)CeO_2-xCaTiO_3$ ceramics.

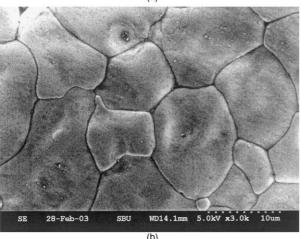


Fig. 2. Scanning electron micrographs recorded from thermally etched samples: (a) CeO₂×6000; (b) 0.9CeO₂–0.1CaTiO₃×3000.

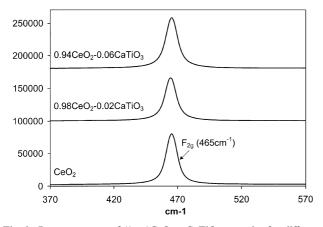


Fig. 3. Raman spectra of $(1-x)\text{CeO}_2$ - $x\text{CaTiO}_3$ ceramics for different values of x.

resultant relative dielectric constant of the mixture. ¹³ The ε_r increases with the increasing CaTiO₃ content. This is expected since CaTiO₃ has a high ε_r of 170. ⁹ Fig. 5 shows that the measured ε_r is slightly higher than those calculated by the mixture rule. Fig. 4 shows the

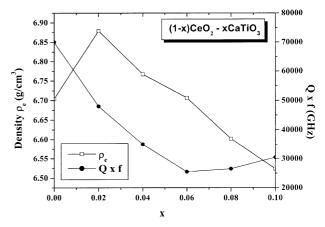


Fig. 4. The variation of experimental density and $Q \times f$ of $(1-x)\text{CeO}_2$ – $x\text{CaTiO}_3$ ceramics as a function of CaTiO₃ content.

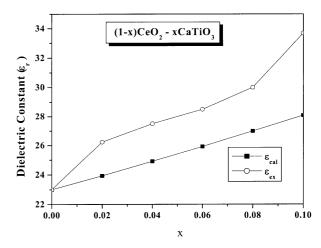


Fig. 5. Variation of experimental and calculated ε_r using the mixture rule with composition in the $(1-x)\text{CeO}_2$ – $x\text{CaTiO}_3$ system.

effect of CaTiO₃ addition on the quality factor $(Q \times f)$. The quality factor decreases with CaTiO₃ addition. Fig. 6 shows the quality factor $(Q \times f)$ of CeO₂–CaTiO₃ measured at low temperatures in the range 20–300 K. The increase in the quality factor is rather small on cooling until 130 K. Further cooling increases the Q considerably but much less when compared with pure ceria.

Fig. 7 shows the variation of $\tau_{\rm f}$ with composition in (1-x) CaTiO₃-xCeO₂ $(0.9 \le x \le 1)$ ceramics. The $\tau_{\rm f}$ varies from -53 to +60 ppm/°C as x varies from 0 to 0.1. The temperature compensation (zero $\tau_{\rm f}$) occurs at x=0.057.

3.2. (1-x) CeO₂- xSm_2O_3 ceramics

 $\rm Sm_2O_3$ has two phases; monoclinic with density 7.746 g cm³ [JCPDS File No. 42-1464] and cubic with density 7.103 g cm³ [JCPDS File No.15-813]. The XRD pattern recorded from crushed powders from sintered compacts of (1-x) $\rm CeO_2$ – $x\rm Sm_2O_3$ $(0 \le x \le 1)$ ceramics are shown

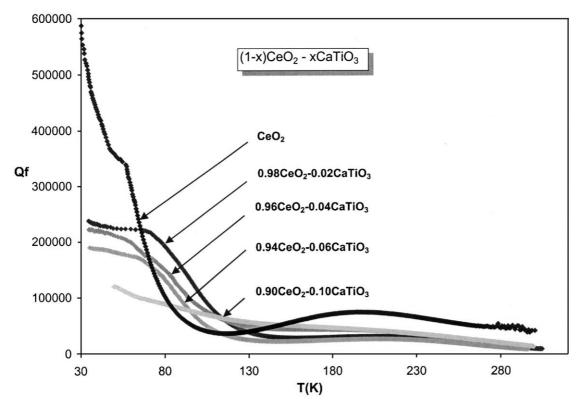


Fig. 6. Variation of quality factor $(Q \times f \text{ GHz})$ of $(1-x)\text{CeO}_2$ - $x\text{CaTiO}_3$ ceramics as a function of temperature.

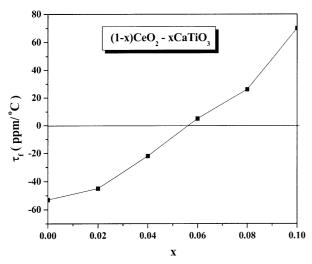


Fig. 7. Temperature coefficient of resonant frequency (τ_f) of $(1-x)\text{CeO}_2$ -xCaTiO₃ ceramics as a function of composition x.

in Fig. 8. The compositions with x=0–0.5 showed a cubic fluorite structure as evidenced by the XRD in Fig. 8 which is in agreement with Peng et al. ¹⁴ The CeO₂–Sm₂O₃ sintered into dense ceramic. Fig. 9 shows the variation of density with composition. The density initially decreases and then increases with increase in Sm₂O₃ content. Fig. 10 show the SEM images from 0.5CeO₂–0.5Sm₂O₃ ceramic, indicating a single phase nature. The SEM photographs show dense ceramic with grain size up to 10 μ m that are smaller in size as com-

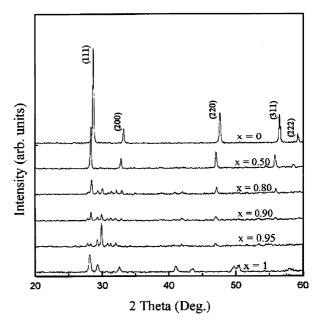


Fig. 8. The powder X-ray diffraction patterns of $(1-x)\text{CeO}_2$ – $x\text{Sm}_2\text{O}_3$ ceramics.

pared to pure ceria. The XRD patterns recorded from samples with x>0.5 are in agreement with the monoclinic symmetry $\rm Sm_2O_3$. The $\rm Sm_2O_3$ sintered up to 99% of the theoretical density (7.746 g cm³). The sintered $\rm Sm_2O_3$ has $\varepsilon_r=23$, $\tau_f=+22$ ppm/°C and $Q\times f=46,000$ GHz. However the sintered samples decomposed and

became powder on aging. Addition of 0.5 wt.% of CuO prevented the decomposition problem.

Fig. 11 shows the Raman spectra of Sm-doped CeO₂ for compositions were X < 0.5. The linewidth (FWHM) of the 465 cm⁻¹ mode increases up to X = 0.2 (from 10.5) to 37.3 cm⁻¹) and thereafter decreases to 27.3 cm⁻¹ at X=0.5. The same mode, which can be viewed as an indication of the Ce-O8 vibrations, shifts first to lower frequency when X goes to 0.1 (from 465.5 to 463.5 cm⁻¹) before shifting higher to 473.1 cm⁻¹ at X = 0.3and finally lower again to 469.5 cm⁻¹ at X = 0.5. These shifts are due to the change of oxygen vacancies and valency changes which are introduced into the CeO2 lattice when Sm³⁺ substitute the Ce⁴⁺. Additional modes appears with more samarium addition where most noticeable are a couple of soft modes at 554 and 589 cm⁻¹. The theory of changes of oxygen vacancies, which in return causes intrinsic losses, are supported by comparing the dielectric loss at low temperatures where a small addition of Sm (X=0.01) decreases the loss of pure CeO₂ at 100 K and by further addition of Sm, up

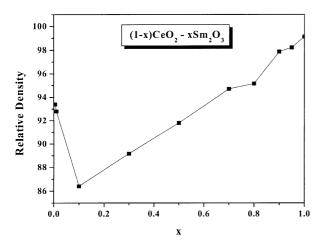


Fig. 9. Variation of the relative density of $(1-x)\text{CeO}_2$ - $x\text{Sm}_2\text{O}_3$ ceramics as a function of composition x.

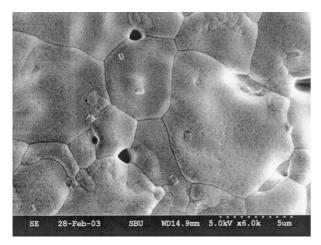


Fig. 10. Scanning electron micrograph of 0.5CeO₂–0.5Sm₂O₃ ceramic.

to X=0.5, a steady decrease of the loss appear at the same temperature.

The maximum solubility of samarium into the lattice is about X = 0.5. ¹⁴ This can be observed in a drastic change of both ε_r and Q at X=0.5 as shown in Fig. 12. The similar ionic size between Ce⁴⁺ and Sm³⁺ contribute to a much higher solubility than the CaTiO₃ doped composites. The variation of ε_r and $Q \times f$ of the (1-x)CeO₂-xSm₂O₃ as a function of x are shown in Fig. 12. The ε_r of both Sm₂O₃ and CeO₂ are nearly the same and so it is expected that ε_r of the system remains almost the same through out the region under study. However there is a decrease in the ε_r in the region $0.01 \le x \le 0.50$, which can be attributed to the decrease in relative density. The $Q \times f$ increases from 70,000 to 90,000 GHz as x varies from zero to 0.5 and further increase in x decreases the quality factor. The τ_f increases from -53ppm/ $^{\circ}$ C with increase in x and becomes positive value as shown in Fig. 13. The τ_f becomes zero for x = 0.92.

Fig. 14 shows the variation of the quality factor on cooling the ceramic samples down to 20 K. In the case of CeO₂ the quality factor increases rapidly on cooling. The percentage increase in the quality factor on cooling

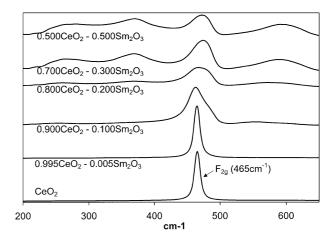


Fig. 11. Raman spectra of $(1-x)\text{CeO}_2$ - $x\text{Sm}_2\text{O}_3$ ceramics for different values of x.

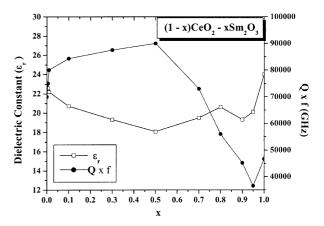


Fig. 12. Variation of $\varepsilon_{\rm r}$ and $Q\times f$ GHz of $(1-x){\rm CeO_2}$ – $x{\rm Sm_2O_3}$ ceramics as a function of composition x.

decreases with increase in $\rm Sm_2O_3$ content. For 50 mol% $\rm Sm_2O_3$ addition, there is hardly any increase in the Q value on cooling. The $0.5\rm CeO_2-0.5\rm Sm_2O_3$ has the highest Q at room temperature. The quality factor–temperature plot shows a dip or lowering of Q at about 100 K.

In order to study the effect of various rare earth ions with different ionic radii on the microwave dielectric properties of ceria 1 mol% each of rare oxide such as Nd₂O₃, Eu₂O₃, Gd₂O₃ and Er₂O₃ was added to calcined CeO₂ and pellets were prepared. The microwave dielectric properties of these rare earth doped ceria are tabulated in Table 1. Table 1 shows that microwave

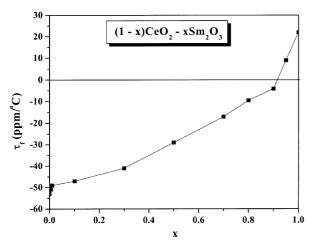


Fig. 13. Temperature coefficient of resonant frequency (τ_f) of $(1-x)\text{CeO}_2$ –Sm₂O₃ ceramics as a function of composition x.

dielectric properties of ceria does not depend on the radii of the rare earth dopant ion.

4. Conclusions

The (1-x)CeO₂–xCaTiO₃ $(0.1 \le x \le 0)$ (1-x)CeO₂-Sm₂O₃ $(0 \le x \le 1)$ dielectric ceramics have been prepared by conventional solid state ceramic route. X-ray diffraction, SEM and Raman studies indicate that CeO_2 -CaTiO₃ form a solid solution phase. The ε_r increases, Q decreases and τ_f increases with CaTiO₃ addition. The ε_r of ceria increases with the addition of CaTiO₃, but decreases with Sm₂O₃ addition. Complete temperature stability is achieved by the addition of 5.7 mol\% of CaTiO₃ to CeO₂. In the case of (1-x)CeO₂ xSm_2O_3 the Q increases up to about x=0.5 beyond which the Q decreases and temperature compensation occurs at x = 0.92. The microwave dielectric properties

Table 1 Microwave dielectric properties of 1 mol% rare earth (RE) doped ceria

RE	$Q \times f(GHz)$	$arepsilon_{ m r}$	$\tau_{\rm f} (ppm/K)$
Nd	51,000	22.80	-63
Sm	90,000	23.93	-50
Eu	30,000	24.00	-78
Gd	48,000	24.20	-55
Er	74,000	23.50	-60

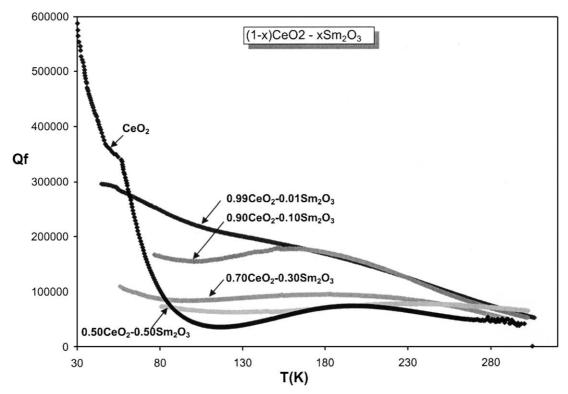


Fig. 14. Variation of quality factor $(Q \times f \text{ GHz})$ as a function of temperature on cooling.

of ceria are not depended on the ionic radius of the dopant rare earth ions. SEM studies show that addition of Sm_2O_3 and $CaTiO_3$ reduces the grain size of the CeO_2 ceramics.

Acknowledgements

The authors are grateful to DST, Government of India, New Delhi and Engineering and Physical Sciences Research Council, UK for financial assistance. One of the authors (MTS) gratefully acknowledges the EPSRC for the award of a visiting scientist position.

References

- Wersing, W., Microwave ceramics for resonators and filters. Current Opinion in Solid State Materials, 1996, 1, 715–731.
- Dikmen, S., Shuk, P. and Greenblatt, M., Hydrothermal synthesis and properties of Ce_{1-x}La_xO_{2-d} solid solutions. *Solid State Ionics*, 1999, 126, 89–95.
- Santha, N, Sebastian, M. T., Mohanan, P., Alford, N., Mc Neil, Puller, R. C., Sarma, V. K., Kamba, S., Pashkin, A., Samukhina, P. and Petzelt, J., Effect of doping on the dielectric properties of CeO₂ in the microwave and submillimeter frequency range. *J. Amer. Ceram. Soc.* (in press).
- Santha, N., Jawahar, I. N., Mohanan, P. and Sebastian, M. T., Microwave dielectric properties of (1-x)CaTiO₃-xSm(Mg_{1/2} Ti_{1/2})O₃ ceramics. *Mater. Lett.*, 2002, 54, 318–322.
- Sreemoolanadhan, H., Issac, J., Sebastian, M. T., Jose, K. A. and Mohanan, P., Synthesis characterization and properties of

- $Ba_{1-x}Sr_x(Nd_{0.5}Nb_{0.5})O_3$ ceramics for application as dielectric resonator in microwave circuits. *Ceramics International*, 1995, **21**, 385–389.
- Huang, C. L., Yang, R. Y. and Weng, M. H., Dielectric properties of CaTiO₃–Ca(Mg_{1/3}Nb_{2/3})O₃ ceramic system at microwave frequency. *Jpn. J. Appl. Phys.*, 2000, 39, 6608–6611.
- Ohsato, H., Atsushi, A., Takagi, Y. T., Nishigaki, S. and Okuda, T., Microwave dielectric properties and sintering of Ba_{6-3x} R_{8+2x}Ti₁₈O₅₄(R=Sm, x=2/3) solid solution with added rutile. *Jpn. J. Appl. Phys.*, 1998, 37, 5357–5359.
- Kim, D. H., Lim, S. K. and An, C., The microwave dielectric properties of xTiO₂-(1-x)CeO₂ ceramics. *Mater. Lett.*, 2002, 52, 240-243.
- 9. Wise, P. L., Reaney, I. M., Lee, W. E., Price, T. J., Iddles, D. M. and Cannel, D. S., Structure-microwave property relationship in $(Sr_xCa_{1-x})_{n+1}Ti_{n+n}O3_{n+1}$. *J. Eur. Cer. Soc.*, 2001, **21**, 1723–1726.
- Hakki, B. W. and Coleman, P. D., Dielectric resonator method of measuring inductive capacities in the millimeter range. *IEEE Trans. Microwave. Theory. Technol.*, 1970, MTT-8, 402–410.
- Courtney, W. B., Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave insulators. *IEEE Trans. Microw. Theory Technol.* 1970, MTT-18, 1970, 476–485.
- Krupka, J., Derzakowski, K., Riddle, B. and Jarvis, J. B., A dielectric resonator for measurements of complex permittivity of low loss dielectric materials as a function of temperature. *Meas. Sci. Technol.*, 1998, 9, 1751–1756.
- Kim, D. H., Lim, S. K., An, C. and Kim, J. C., Microwave Dielectric Properties of xMgTiO₃-(1-x)(Na_{1/2}Lni₁₂)TiO₃ Ceramics. J. Mater. Sci.: Mater. Electron., 1999, 10, 673-676.
- 14. Peng, C., Wang, Y., Jiang, K., Bin, B. Q., Liang, H. W., Feng, W. J. and Meng, J., Study on the structure change and oxygen vacation shift for Ce_{1-x}Sm_xO_{2-y} solid solution. *J. Alloys and Compounds*, 2003, 349, 273–278.