

Available online at www.sciencedirect.com

Journal of the European Ceramic Society 25 (2005) 957-962

www.elsevier.com/locate/jeurceramsoc

Effect of V₂O₅ on sintering behaviour, microstructure and dielectric properties of textured Sr_{0.4}Ba_{0.6}Nb₂O₆ ceramics

Q. W. Huang^{a,*}, L. H. Zhu^b, J. Xu^b, P. L. Wang^a, H. Gu^a, Y. B. Cheng^c

^a The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
^b School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China

^c School of Physics and Materials Engineering, Monash University, Clayton, Vic. 3800, Australia

Received 30 August 2003; received in revised form 11 December 2003; accepted 20 December 2003 Available online 24 June 2004

Abstract

The acicular $Sr_{0.39}Ba_{0.48}K_{0.32}Nb_2O_6$ single crystal particles were first prepared by the reaction of $SrCO_3$, $BaCO_3$ and Nb_2O_5 in molten K_2SO_4 at $1300\,^{\circ}C$ for 3 h. By using these single crystal particles as seeds and V_2O_5 as additives, textured $Sr_{0.4}Ba_{0.6}Nb_2O_6$ (SBN40) ceramics were obtained. The effect of V_2O_5 on sintering behaviour, microstructure and dielectric properties of textured SBN40 ceramics was investigated. The experimental results show that the addition of V_2O_5 can accelerate the densification rate of the material and encourage the texture of SBN40 ceramics, which further improves the anisotropy in dielectric properties between different directions of textured SBN40 ceramics.

© 2004 Elsevier Ltd. All rights reserved.

Keywords: (Sr,Ba)Nb₂O₆; Additives; Sintering; Microstructure; Dielectric properties

1. Introduction

The growth of strontium barium niobate ($Sr_xBa_{1-x}Nb_2O_6$, $0.25 \le x \le 0.75$ abbreviated as SBN) single crystals with different compositions, and the effect of composition on properties, is widely studied because of its immense importance in many technological applications such as electro-optic, $^{1-3}$ pyro-electric, 4,5 piezoelectric, $^{6-8}$ and photo-refractive devices. $^{9-11}$ But the high cost and difficult fabrication of SBN single crystals have laid restrictions on their applications. In recent years, SBN ceramics have gained increasing attention since they are easier and cheaper to fabricate into large sizes and complex shapes. However, the randomly oriented grains often impair the electrical properties of SBN ceramics. Recently, some studies have shown that textured SBN ceramics have excellent electrical properties, which opens up one effective way to improve the electrical properties of SBN ceramics. 8,12

Templated grain growth (TGG) is so far considered to be the most effective method to obtain textured ceramics. The

E-mail address: huangqw@mail.slc.ac.cn (Q.W. Huang).

process involves orienting anistropically-shaped template particles in a dense, fine-grained matrix. Template particles must be large and anisometric in shape, so that they can be oriented during forming, and grow preferentially during heating. The final texture in the microstructure is dependent strongly on the number of template particles, the relative size of matrix and template particles and sintering additives. Duran et al. 12 studied the microstructure and electrical properties of textured Sr_{0.53}Ba_{0.47}Nb₂O₆ ceramics, which were fabricated using KSr₂Nb₅O₁₅ (KSN) particles as template and V2O5 as additive, but the effect of V₂O₅ additive on sintering behaviour, texture development and dielectric properties is not clear. In addition, the template particles KSr₂Nb₅O₁₅ contained minor amounts of impurities SrNb2O6 and Sr2Nb2O7, which made it difficult to design the composition of SBN ceramics properly. In this paper, pure, acicular strontium barium potassium niobate particles were first synthesised by means of molten salt synthesis (MSS). By using these acicular particles as seeds, the effect of V₂O₅ additives on sintering behaviour, texture development and dielectric properties of textured Sr_{0.4}Ba_{0.6}Nb₂O₆ ceramics was investigated.

^{*} Corresponding author.

2. Experimental details

Reagent grade oxides, $SrCO_3$ (purity: 99.95%), $BaCO_3$ (purity: 99.95%), Nb_2O_5 (Purity: 99.99%) and K_2SO_4 (purity: 99.95%) were used as starting powders. Acicular $Sr_{0.4}Ba_{0.6}Nb_2O_6$ template particles were prepared via MSS from $SrCO_3$, $BaCO_3$ and Nb_2O_5 , in which K_2SO_4 was added at a weight ratio of 1:1. The mixture was sealed in an alumina crucible and then heated at 1300 °C for 3 h in air. On the completion of reaction, flux salt was removed from the powder particles by repeated washing with hot deionised water until no chloride ions were detected by silver nitrate.

The matrix powders SrNb₂O₆ (SN) and BaNb₂O₆ (BN), used to synthesise textured Sr_{0.4}Ba_{0.6}Nb₂O₆ ceramics, were prepared separately by ball-milling SrCO₃ or BaCO₃ and Nb₂O₅ for 24 h in ethanol. Then the dried powders were calcined at 950 °C for 3h. After appropriate amounts of SN, BN according to Sr_{0.4}Ba_{0.6}Nb₂O₆ composition and 0.5 wt.% V₂O₅ additive were mixed with a solvent (60 vol.% toluene-40% ethanol) and milled for 24h, 10 wt.% template particles, poly(vinyl butyral) (binder), triethanolamine (modifier) and diethyl-o-phthate (plasticiser) were added and mixed for 6h. The slurry consisting of 10 wt.% template particles was tape-casted to obtain some 0.1 mm-thick sheets, which were cut, laminated and pressed at 100 MPa to form green compacts ($6 \, \text{mm} \times 6 \, \text{mm} \times 12 \, \text{mm}$). The green compacts were heated at 600 °C for 2 h to remove organic ingredients and then isostatically pressed at 200 MPa at room temperature. Finally the specimens were sintered between 1100 and 1425 °C in air at a heating rate of 4 °C/min for 3 h.

Randomly oriented specimens were prepared according to the conventional method. The $Sr_{0.4}Ba_{0.6}Nb_2O_6$ powders synthesised by the reaction of $SrCO_3$, $BaCO_3$ and Nb_2O_5 at $1100\,^{\circ}C$ for 3 h were mixed, uniaxially pressed at $100\,MPa$ and further isostatically pressed at $200\,MPa$ and sintered at $1300\,^{\circ}C$ for 3 h.

The bulk density of samples was measured in water by Archimede's principle. The texture, perpendicular to tape casting direction, as well as phase assembly, was determined using X-ray diffractometry (XRD) with Cu Kα. The specimens with or without grain orientation were polished and thermally etched for microstructure observation which was carried out by scanning electron microscope (SEM, Model HITACHI 270) with an energy dispersive X-ray spectrometer (EDS). The specimens were electroded by silver paste. The dielectric constant and dielectric loss at 1 kHz were mea-

sured on unpoled samples from room temperature to 250 °C using a HP4192A impedance analyzer.

3. Results and discussion

3.1. Synthesis of acicular template particles

It is worth noticing that the synthesised product from SrCO₃, BaCO₃, and Nb₂O₅ in molten K₂SO₄ consists of the expected tetragonal tungsten bronze phase and minor amount of BaSO₄, which can be easily removed by the conventional sedimentation method due to the considerable difference in particle size. An XRD pattern of the powder synthesised via MSS at 1300 °C is shown in Fig. 1. It can be seen that the synthesised powder from which BaSO₄ has been removed is composed of single tetragonal tungsten bronze phase. In comparison with Sr_{0.4}Ba_{0.6}Nb₂O₆ prepared by the conventional mixed-oxide method (CMO) (a =1.24731 nm, c = 0.396653 nm), ¹³ the unit-cell dimensions of SBN synthesised by MSS are larger (see Table 1). EDS analysis shows the seed particles contain a certain amount of K in addition to Sr, Ba, Nb, and O (see Table 1), indicating that K in K₂SO₄ can substitute for Sr, Ba during the formation of Sr_{0.4}Ba_{0.6}Nb₂O₆ seed particles in the form of Sr_{0.39}Ba_{0.48}K_{0.33}Nb₂O₆.

SBN has a tungsten bronze structure with a unit-cell formula of $(A1)_4(A2)_2C_4B_{10}O_{30}$, 14 in which the A1, A2, C and B cations are in the 15-, 12-, 9- and 6-fold-coordinated sites, respectively. The Ba^{2+} and Sr^{2+} occupy five of the six $(A_1,\ A_2)$ -sites. In the sample fired in KCl flux, two potassium ions substitute for one strontium or barium ions

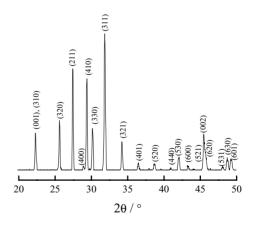


Fig. 1. XRD pattern of the powder synthesised via MSS at 1300 °C.

Table 1 Lattice parameters, chemical compositions and morphology characterisation of the synthesised seed particles

Lattice parameters			Chemical compositions (at.%)					Morphology characterisation	
a = b (nm)	c (nm)	Volume (nm ³)	K	Sr	Ba	Nb	О	Length (µm)	Aspect ratio
1.2519(2)	0.3980(1)	0.6237	3.32	3.90	4.78	22.01	65.99	4–43	4–22

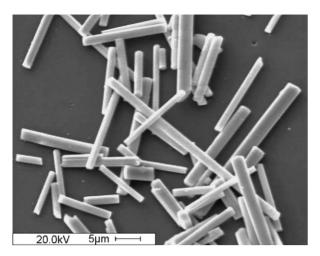


Fig. 2. SEM micrograph of acicular $Sr_{0.4}Ba_{0.6}Nb_2O_6$ template particles prepared via MSS.

in $Sr_{0.4}Ba_{0.6}Nb_2O_6$. Potassium ions are considered to distribute in $-A_1$ and A_2 —interstitial sites in a random manner. Considering that the ionic radius of potassium (1.51 Å) is larger than the barium ion (1.42 Å) and that there are more cations in the unit cell, it can be understood that SBN obtained by MSS should have larger cell dimensions than that of SBN obtained by CMO.

SEM micrograph of acicular $Sr_{0.4}Ba_{0.6}Nb_2O_6$ particles via MSS is shown in Fig. 2. The synthesised seed particles has the length of 4–43 μ m and an aspect ratio of 4–22 (see Table 1).

3.2. Effect of V_2O_5 on the densification behaviour of textured $Sr_{0.4}Ba_{0.6}Nb_2O_6$ ceramics

The effect of V_2O_5 additive on the densification behaviour of $Sr_{0.4}Ba_{0.6}Nb_2O_6$ ceramics is shown in Fig. 3. The density of SBN40 samples increases with sintering temperature whether V_2O_5 is added or not. It is noted that the density of V_2O_5 -free samples increases quickly from 3.45 to 5.18 g/cm³ within a narrow temperature range

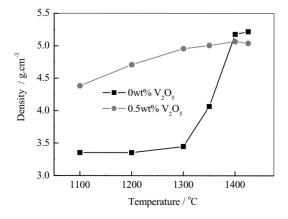


Fig. 3. The effect of V_2O_5 on the densification behaviour of $Sr_{0.4}Ba_{0.6}$ - Nb_2O_6 ceramics.

(1300–1400 °C) and reaches a maximum value at 1425 °C. The addition of V₂O₅ helps to improve the densification of SBN40 markedly. For example, even if it is sintered at 1100 °C, the V₂O₅-containing sample has a density of 4.38 g/cm³, which is much higher than V₂O₅-free sample sintered at 1350 °C (4.07 g/cm³). Thus, V₂O₅-containing SBN with relatively higher density can be sintered at lower temperature. It is reported that V⁵⁺ ions are rarely dissolved in the tungsten bronze structure. 15 Thus, V₂O₅ exists as liquid phase in the grain boundaries at not very high temperature because of low melting point (690 °C), promoting the densification of SBN ceramics. With the increase in temperature, the viscosity of molten V₂O₅ decreases, which helps V₂O₅ to spread out across the grains, and consequently density increases. However, too high a temperature will result in the decrease of density owing to the evaporation of V_2O_5 .

3.3. Effect of V_2O_5 on the texture development of $Sr_{0.4}Ba_{0.6}Nb_2O_6$ ceramics

XRD patterns of V₂O₅-free SBN samples prepared with seed particles sintered at 1400 and 1425 °C are shown in Fig. 4b and c; the XRD pattern of sample prepared without seeds and V₂O₅ is also given for comparison (Fig. 4a). Strong $\{00l\}$ XRD peaks of seed-containing sample do not occur unless the sintering temperature is higher than 1425 °C, indicating that texture development is not easy under the condition of absence of V₂O₅. The addition of seed particles makes every peak position turn left slightly, which is probably related to K⁺ ions in template particles. XRD patterns of V₂O₅-containing SBN samples prepared with seed particles, sintered at different temperatures are shown in Fig. 5, as well as that of sample sintered at 1300 °C without seeds. Similar to V₂O₅-free samples, the grains in the sample without template particles do not exhibit a preferred orientation (see Fig. 5a). In contrast, the sample prepared with seeds sintered at 1200 °C shows strong {00 l} peaks in the XRD pattern, suggesting that with the aid of V₂O₅ texture begins to develop at lower temperature. With the increase of temperature, the $\{00l\}$ peaks dominate the diffraction pattern for samples sintered above 1300 °C.

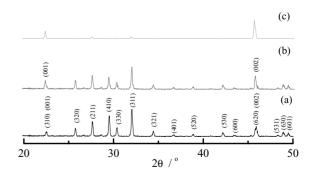


Fig. 4. XRD patterns of $V_2O_5\text{-free}$ SBN samples prepared without (a) or with seed particles sintered at $1400\,^\circ C$ (b) and $1425\,^\circ C$ (c).

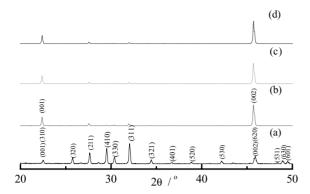


Fig. 5. XRD patterns of V_2O_5 -containing samples prepared without (a) or with seed particles sintered at $1200\,^{\circ}\text{C}$ (b), $1300\,^{\circ}\text{C}$ (c) and $1400\,^{\circ}\text{C}$ (d).

The degree of orientation $F_{(00l)}$, was calculated using the following equations (Lotgering method)¹⁶:

$$F = \frac{P - P_0}{1 - P_0} \tag{1}$$

$$P = \frac{\sum I_{\{00l\}}}{\sum I_{\{lkl\}}} \tag{2}$$

$$P_0 = \frac{\sum I_{0\{00l\}}}{\sum I_{0\{hkl\}}} \tag{3}$$

where I and I_0 are the peak intensities of oriented and random samples, P and P_0 are the ratio of $\{0\ 0\ l\}$ and $\{h\ k\ l\}$ peak intensities in the oriented and random samples, respectively. In this work, the diffraction lines between $2\theta=20$ and 50° were chosen to calculate P and P_0 .

Fig. 6 shows the effect of V_2O_5 on the degree of alignment for the specimens prepared with or without V_2O_5 as a function of sintering temperature. It can be seen that degree of orientation in specimens prepared without V_2O_5 is small below 1400 °C and quickly reaches a maximum (0.85) at 1425 °C. In contrast, the V_2O_5 -containing sample sintered at 1100 °C has a high degree of orientation of 0.65, and then the degree of orientation increases gradually with increasing temperature to a maximum of 0.86. These results indicate

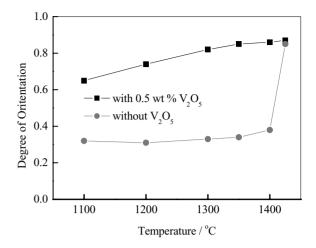
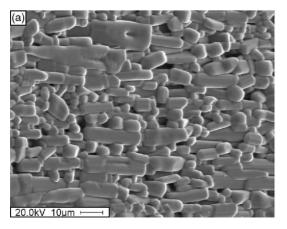



Fig. 6. Degree of orientation as a function of sintering temperature for specimens with and without V_2O_5 .

that the presence of liquid phase V_2O_5 favours the formation of textured SBN40 ceramics. For specimens prepared without V_2O_5 , the rapid growth of seed particles leads to high texture at $1425\,^{\circ}\mathrm{C}$.

SEM micrographs of samples, parallel to tape casting direction, of V₂O₅-containing samples prepared with seeds, sintered between 1200 and 1425 °C have similar microstructures, i.e. some large, highly anisotropic grains are aligned. The microstructure of V₂O₅-containing sample sintered at 1200°C is shown in Fig. 7a. Thus, strong morphologic texture can be easily obtained in V₂O₅-containing samples by introducing aligned template particles. However, the microstructure of V₂O₅-free samples is quite different. Only equi-axed grains can be seen in the sample even though it was sintered at 1425 °C, see Fig. 7b. EDS analysis shows that all the vanadium exist in grain boundaries. Obviously, the differences in microstructure of two samples with and without V₂O₅ result from the presence of V₂O₅, since V₂O₅ with low melting point will become liquid phase during sintering and promote the faster growth of (00l) planes having high surface energy.

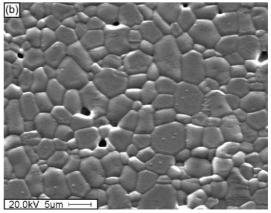


Fig. 7. SEM micrographs of V₂O₅-containing sample sintered at 1200 °C (a) and V₂O₅-free sample sintered at 1425 °C (b).

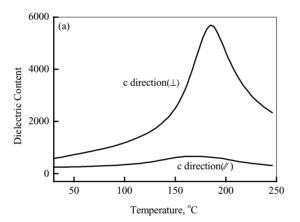

Preparation conditions			The degree of orientation	$T_{\rm c}$ (Curie temperature) (°C)	ε at room temperature	ε at $T_{\rm c}$
Seed particles	V ₂ O ₅	Temperature (°C)				
With	With	1200	0.74	181	487	5072
With	With	1300	0.82	182	553	5686
With	With	1400	0.86	181	581	7065
With	Without	1400	0.38	181	594	3412
With	Without	1425	0.81	182	482	5000
Without	Without	1300	0	156	550	1030

Table 2

Comparison of temperature and V₂O₅ additive on texture development, dielectric properties of SBN40 sample prepared at different conditions

3.4. Effect of V_2O_5 on the dielectric properties of textured $Sr_{0.4}Ba_{0.6}Nb_2O_6$ ceramics

Fig. 8 shows the orientation-dependence and temperature dependence of the dielectric constant and dielectric loss at $1\,\mathrm{kHz}$ for a V_2O_5 -containing sample sintered at $1300\,^\circ\mathrm{C}$ for 3 h. In Fig. 8a, the dielectric constant at room temperature in the direction perpendicular to the c-axis (607) is higher than the parallel to the c-axis (244), which is consistent with the well-known dielectric anisotropy in single crystals. ¹⁷ The anisotropy in the dielectric constant between the perpendicular- and parallel-cut samples increases with

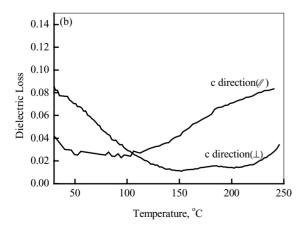


Fig. 8. Temperature and crystallographic direction dependence of the dielectric constant (a) and dielectric loss (b) for V_2O_5 -containing sample sintered at 1300 $^{\circ}$ C for 3 h.

increasing temperatures and reaches a maximum at the Curie temperature $T_{\rm c}$ ($\varepsilon_{\rm r}=5686$ and 550, respectively). These two orientations also show different dielectric-loss behaviours, presumably because the electrical conductivity in the parallel cuts is higher than perpendicular cuts.

Table 2 shows the effect of temperature and V₂O₅ additive on dielectric properties of SBN40. Whether V₂O₅ is added or not, the samples prepared with seed particles have almost the same T_c , indicating that T_c is not influenced by the addition of V2O5. However, in comparison with the sample prepared without seed particles, the samples prepared with seed particles have higher T_c value, showing that the addition of seed particles influences the T_c of SBN40 value. Previous investigation^{18,19} shows that when alkali elements, such as sodium and potassium, are present in the structure, they will partially or fully occupy the interstitial sites with no vacancy left and this causes the value of T_c to increase, which stabilises the ferroelectric structure. From Table 2, T_c of the sample prepared without seed particles and V_2O_5 approaches single crystal SBN40 ($T_c =$ 158 °C). 17 In addition, similar to the tendency of degree of orientation versus temperature, ε at both room temperature and Curie temperature increases with increasing sintering temperature, indicating that the dielectric properties of textured SBN40 ceramics increase with the degree of orientation.

Due to lack of ε_r of single crystal SBN40, we cannot compare our data with single crystal. But from the above experimental results, it can be seen that the addition of V_2O_5 is helpful to improve the degree of orientation and therefore increases the dielectric anisotropy.

4. Conclusions

The acicular $Sr_{0.39}Ba_{0.48}K_{0.32}Nb_2O_6$ single crystal particles with the aspect ratio of 4–22 were obtained in molten K_2SO_4 salt at 1300 °C for 3 h. By using these single crystal particles as templates, textured $Sr_{0.4}Ba_{0.6}Nb_2O_6$ (SBN40) ceramics were prepared.

The addition of V_2O_5 favours the lowering of the sintering temperature of the textured SBN40 ceramics and the growth of seed particles, resulting in the improvement of the degree of orientation and the anisotropy of dielectric prop-

erties between perpendicular- and parallel-cut directions in textured SBN40.

Acknowledgements

This research is supported by the National Natural Science Foundation of China and the Outstanding Overseas Chinese Scholars Fund of Chinese Academy of Science.

References

- Antisigin, V. D., Kotsov, E. G., Malinovsky, V. K. and Sterelyukhina, L. N., Electrooptics of thin ferroelectric films. *Ferroelectrics* 1981, 38, 761–763.
- Lenzo, P. V., Spencer, E. G. and Ballman, A. A., Electrooptic coefficients of ferroelectric strontium barium niobate. *Appl. Phys. Lett.* 1967, 11, 23.
- VanDamme, N. S., Sutherland, A. E., Jones, L., Bridger, K. and Winzer, S. R., Fabrication of optically transparent and electrooptic strontium barium niobate ceramics. *J. Am. Ceram. Soc.* 1991, 74, 1785–1792.
- Glass, A. M., Investigation of Sr_{1-x}Ba_xNb₂O₆ with special reference to pyroelectric detection. *J. Appl. Phys.* 1969, 40, 4699–4713.
- Lee, S. I. and Choo, W. K., Modified ferroelectric high-density strontium barium niobate ceramics for pyroelectric applications. *Ferroelectrics* 1988, 87, 209–212.
- Neurgaonkar, R. R., Kalisher, M. H., Lim, T. C., Staples, E. J. and Keester, K. I., Piezoelectric tungsten bronze crystals for SAW device applications. *Mater. Res. Bull.* 1980, 15, 1235.
- Moreno-Gobbi, A., Pérez, M., Paolini, G., Negreira, C. A., Garcíra, D. and Eiras, J. A., Ultrasound studies of phase transitions in tungsten bronze ferroelectric materials. *J. Alloys Comp.* 2000, 310, 29–31.

- Duran, C., McKinstry, S. T. and Messing, G. L., Dielectric and piezoelectric properties of textured Sr_{0.53}Ba_{0.47}Nb₂O₆ ceramics by templated grain growth. *J. Mater. Res.* 2002, 17, 2399–2409.
- Neurgaonkar, R. R. and Cory, W. K., Progress in photorefractive tungsten bronze crystals. J. Opt. Soc. Am. 1986, B3, 274–282.
- Neurgaonkar, R. R., Cory, W. K., Oliver, J. R., Ewbank, M. D. and Hall, W. F., Development and modification of photorefractive properties in the tungsten bronze family crystals. *Opt. Eng.* 1987, 26, 392–405.
- Woike, T., Dörfler, U., Tsankov, L., Weckwerth, G., Wolf, D., Wöhlecke, M. et al., Photorefractive properties of Cr-doped Sr_{0.61}Ba_{0.39}Nb₂O₆ related to crystal purity and doping concentration. Appl. Phys. 2001, B72, 661–666.
- Duran, C., McKinstry, S. T. and Messing, G. L., Fabrication and electrical properties of textured Sr_{0.53}Ba_{0.47}Nb₂O₆ ceramics by templated grain growth. *J. Am. Ceram. Soc.* 2001, 83, 2203–2213.
- Huang, Q. W., Wang, P. L., Cheng, Y. B. and Yan, D. S., XRD analysis of formation of strontium barium niobate phase. *Mater. Lett.* 2002, 56, 915–920.
- Jamiesion, P. B., Abrahams, S. C. and Bernstein, J. L., Ferroelectric tungsten bronze-type crystal structures: I. Barium strontium Ba_{0.27}Sr_{0.75}Nb₂O_{5.78}. J. Chem. Phys. 1968, 48, 5048–5055.
- Nishiwaki, S., Takahashi, J. and Kodaira, K., Synthesis and phase transition of ferroelectric Sr_{0.2}Ba_{0.8}Nb₂O₆. J. Ceram. Soc. Jpn., Int. Ed. 1996, 104, 413–415.
- Lotgering, F. K., Topotactical reaction with ferromagnetic oxides having hexagonal crystal structures I. J. Inorg. Nucl. Chem. 1959, 9, 113–123.
- Neurgaonkar, R. R., Hall, W. F., Oliver, J. R., Ho, W. W. and Copy, W. K., Tungsten bronze Sr_{1-x}Ba_xNb₂O₆: a case history of versatility. *Ferroelectrics* 1988, 87, 167–179.
- Umakantham, K., Murty, S. N., Rao, K. S. and Bhanumathi, A., Effect of rare-earth ions on the properties of modified SBN ceramics. *J. Mater. Sci. Lett.* 1987, 6, 565–568.
- Murty, S. N., Murty, K. V. R., Mouli, K. C., Bhanumathi, A., Raju, S. B., Padmavathi, G. *et al.*, Relaxor behavior in certain tungsten bronze ceramics. *Ferroelectrics* 1994, **158**, 325.