





Journal of the European Ceramic Society 27 (2007) 261–265

www.elsevier.com/locate/jeurceramsoc

# Effect of B<sub>2</sub>O<sub>3</sub> on the sintering and microwave dielectric properties of M-phase LiNb<sub>0.6</sub>Ti<sub>0.5</sub>O<sub>3</sub> ceramics

Qun Zeng, Wei Li\*, Jian-lin Shi, Jing-kun Guo, Heng Chen, Ming-lin Liu

Research and Institute Center of Functional Ceramics, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding Xi Road, Shanghai 200050, PR China

Received 19 January 2006; received in revised form 20 April 2006; accepted 29 April 2006 Available online 13 June 2006

#### Abstract

The effect of  $B_2O_3$  addition on the sintering, microstructure and the microwave dielectric properties of LiNb<sub>0.6</sub>Ti<sub>0.5</sub>O<sub>3</sub> ceramics have been investigated. It is found that low-level doping of  $B_2O_3$  ( $\leq 2$  wt.%) can significantly improve the densification and dielectric properties of LiNb<sub>0.6</sub>Ti<sub>0.5</sub>O<sub>3</sub> ceramics. Due to the liquid phase effect of  $B_2O_3$  addition, LiNb<sub>0.6</sub>Ti<sub>0.5</sub>O<sub>3</sub> ceramics could be sintered to a theoretical density higher than 95% even at 880 °C. No secondary phase was observed for the  $B_2O_3$ -doped ceramics. There is no obvious degradation in dielectric properties for the ceramics with  $B_2O_3$  additions. In the case of 1 wt.%  $B_2O_3$  addition, the ceramics sintered at 880 °C show good microwave dielectric properties of  $\varepsilon_r$  = 70,  $Q \times f$  = 5400 GHz,  $\tau_f$  = -6.39 ppm/°C. It represents that the ceramics could be promising for multilayer low-temperature co-fired ceramics (LTCC) applications.

© 2006 Elsevier Ltd. All rights reserved.

Keyword: Dielectric properties; Microwave dielectrics; Sintering; B<sub>2</sub>O<sub>3</sub>; Li(Nb,Ti)O<sub>3</sub>

### 1. Introduction

Recently, much attention has been paid to the development of multilayer microwave devices due to the rapid progress on the satellite and mobile communications such as cellular phone, phasers and GPS.<sup>1,2</sup> Several layers of dielectric ceramics and internal electric metal conductors constitute these microwave components. For the fabrication of miniature multilayer devices involving the co-firing of dielectric and highly conductive metal, such as silver or copper, the development of low-temperature co-fired ceramics (LTCC) has been received increasing attention and represented a key position in a high frequency application.<sup>3,4</sup> Generally, low sintering temperature co-fired ceramics (LTCC) can be realized through developing new materials, chemical processing method and using additives which was nowadays an effective and low-cost method in fabricating LTCC. This paper reports on a new family of low sintering temperature dielectric compositions based on the M-phase LiNb<sub>0.6</sub>Ti<sub>0.5</sub>O<sub>3</sub> system.

In the case of the so-called M-phase compounds, Villafuerte-Castrejón et al.<sup>5</sup> have first described them as forming a series of a solid solution,  $\text{Li}_{1+x-y}\text{Nb}_{1-x-3y}\text{Ti}_{x+4y}\text{O}_3$ , with  $0.05 \le x \le 0.3$ ,  $0 \le y \le 0.182$ . Since the excellent microwave dielectric properties of the  $\text{Li}_{1+x-y}\text{Nb}_{1-x-3y}\text{Ti}_{x+4y}\text{O}_3$  system ( $\varepsilon_r = 78-55$ , a tunable  $\tau_{\rm f}$ ,  $Q \times f$  up to 9000 (6 GHz)) reported by Borisevich and Davies,<sup>6</sup> the  $Li_{1+x-y}Nb_{1-x-3y}Ti_{x+4y}O_3$  solid solutions have been known as potential candidate materials for LTCC applications. Although this materials could be sintered to essentially full density at 1100-1150 °C without sintering aids, further investigations are still required for lowering their sintering temperature to about 900 °C so that they could be co-fired with Cu or Ag electrode. Borisevich and Davies<sup>7</sup> first reported that the V<sub>2</sub>O<sub>5</sub>-doped Li<sub>1.0</sub>Nb<sub>0.6</sub>Ti<sub>0.5</sub>O<sub>3</sub> ceramic could be sintered at 900 °C, and showed the microwave dielectric properties of  $\varepsilon_r = 66$ ,  $Q \times f$  value = 3800 GHz,  $\tau_f = 11$  ppm/°C. Recently, Kang et al.<sup>8</sup> lowered the sintering temperature of Li<sub>1.0</sub>Nb<sub>0.6</sub>Ti<sub>0.5</sub>O<sub>3</sub> ceramic to 850 °C by adding 0.5 wt.% of 0.17 Li<sub>2</sub>O-0.83V<sub>2</sub>O<sub>5</sub>, and obtained better dielectric properties of  $\varepsilon_r = 64.5$ ,  $Q \times f$  value = 5933 GHz, and  $\tau_f = 9.4$  ppm/°C.

 $B_2O_3$  has been reported as a good flux former to lower the sintering temperature for many materials. With 0.3 wt.%  $B_2O_3$ , the 0.84  $Ba_5Nb_4O_{15}$ –0.16  $BaNb_2O_6$  ceramics sintered

<sup>\*</sup> Corresponding author. Tel.: +86 21 5241 1408; fax: +86 21 5241 3903. *E-mail address:* liweiran@sh163.net (W. Li).

at 900 °C showed excellent dielectric properties of  $\varepsilon_{\rm r}$  = 42,  $Q \times f$  = 28,000 GHz, and  $\tau_{\rm f}$  = 0 ppm/°C. <sup>9</sup> In the present work, B<sub>2</sub>O<sub>3</sub> has been added to lower the sintering temperature of LiNb<sub>0.6</sub>Ti<sub>0.5</sub>O<sub>3</sub> ceramics. The influence of B<sub>2</sub>O<sub>3</sub> additions on the densification, microstructure and microwave dielectric properties of LiNb<sub>0.6</sub>Ti<sub>0.5</sub>O<sub>3</sub> ceramics have been investigated.

## 2. Experimental

The ceramics were prepared using the conventional mixed oxide route. High-purity oxide powders (>99.5%) of Li<sub>2</sub>CO<sub>3</sub>, Nb<sub>2</sub>O<sub>5</sub> and TiO<sub>2</sub> were used as starting materials. They were mixed according to the desired stoichiometric composition LiNb<sub>0.6</sub>Ti<sub>0.5</sub>O<sub>3</sub> and ball-milled in enthanol using zirconia balls as milling media for 24 h. The wet mixture was dried and preannealed at 700 °C to expel CO<sub>2</sub>, then reground and calcined at 850 °C for 8 h. The calcined powder was then divided into two parts. One part was ball-milled without additives in enthanol. After drying and sieving, the powder was uniaxially pressed into disks measuring 16 mm in diameter and 6-8 mm in thickness. The disks were covered with crucibles and sintered at 1100 °C. Another part was re-milled with different amounts of B<sub>2</sub>O<sub>3</sub>. Then, following the same drying and forming procedures, the B<sub>2</sub>O<sub>3</sub>-containing pellets were sintered at temperatures at 840-920 °C.

The bulk densities of the sintered ceramics were measured by Archimedes method. The crystalline phases of sintered samples were examined by X-ray diffraction (XRD) analysis with Rigaku RINT2000 (Cu K $\alpha$  radiation generated at 40 kV and 40 mA). The well-polished and etched surfaces of the samples were investigated by the electron probe X-ray microanalyser (EPMA) (JXA-8100) and energy dispersive spectra (EDS). The dielectric constant ( $\varepsilon_r$ ) and the quality values Q at microwave frequency were measured using the Hakki–Coleman's dielectric resonator method, as modified and improved by Courtney. An Advantest E8363 network analyzer was employed in the measurement. The temperature coefficient of resonant frequency ( $\tau_f$ ) was measured in the temperature range of -25 to +85 °C. The  $\tau_f$  value was defined as follows:

$$\tau_{\rm f} = \frac{(f_{85} - f_{-25}) \times 10^{-6}}{110 \times f_{25}} (\text{ppm/}^{\circ}\text{C})$$
 (1)

where  $f_{85}$ ,  $f_{-25}$ , and  $f_{25}$  are the resonant frequencies at 85, -25 and 25 °C, respectively.

## 3. Results and discussions

Fig. 1 shows the bulk densities of LiNb<sub>0.6</sub>Ti<sub>0.5</sub>O<sub>3</sub> with various contents of B<sub>2</sub>O<sub>3</sub> as a function of sintering temperature from 840 to 920 °C. As shown in Fig. 1, the samples with 0.5 wt.% B<sub>2</sub>O<sub>3</sub> achieve a relatively high density only when the sintering temperature reached 920 °C. When the B<sub>2</sub>O<sub>3</sub> content increased to above 1 wt.%, the samples could reach high densities even at 840 °C. The highest density could be obtained for the 1.5 wt.% B<sub>2</sub>O<sub>3</sub>-doped ceramic. There is an obvious decrease in the density as the B<sub>2</sub>O<sub>3</sub> content increased to 2 wt.%, which means this

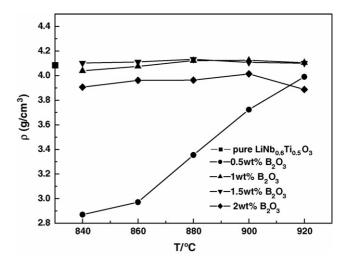



Fig. 1. The bulk density values of the  $LiNb_{0.6}Ti_{0.5}O_3$  ceramics with  $B_2O_3$  additions as a function of sintering temperature.

content is overweighed to the ceramics. From Fig. 1 it could be also observed that the sintering curves of 1–2 wt.%  $B_2O_3$ -added samples are similar, i.e., their densities slightly increase initially and then decrease with increasing temperature. All these results show that  $B_2O_3$  is very effective in enhancing the sintering ability of LiNb<sub>0.6</sub>Ti<sub>0.5</sub>O<sub>3</sub> ceramics.

The SEM micrographs of LiNb $_{0.6}$ Ti $_{0.5}$ O $_3$  ceramics doped with (a) 0 wt.% B $_2$ O $_3$  sintered at 1100 °C and (b) 1 wt.%, (c) 1.5 wt.%, and (d) 2 wt.% B $_2$ O $_3$  sintered at 880 °C are shown in Fig. 2. Long-platelet shaped grains could be observed in all these micrographs, but due to the much lower sintering temperatures, the grain sizes of the B $_2$ O $_3$ -doped samples are much smaller than those of pure LiNb $_{0.6}$ Ti $_{0.5}$ O $_3$  ceramic. Besides, uniform microstructures with grains densely connected could be found in the samples doped with 1 and 1.5 wt.% B $_2$ O $_3$  (Fig. 2(b) and (c)). However, in Fig. 2(d) it could be seen that when the B $_2$ O $_3$  content increases to 2 wt.%, some abnormally-grown large grains would exist, which is probably the main reason for the low density of these samples shown in Fig. 1. Moreover, the EDS results show that no secondary phase could be detected in all these samples.

Fig. 3 shows the X-ray diffraction patterns of LiNb<sub>0.6</sub>Ti<sub>0.5</sub>O<sub>3</sub> ceramics with (a) 0 wt.% B<sub>2</sub>O<sub>3</sub> sintered at 1100 °C and (b) 1 wt.%, (c) 1.5 wt.%, and (d) 2 wt.% B<sub>2</sub>O<sub>3</sub> sintered at 860 °C for 4 h. A series of distinctive satellite reflections originated from the superstructure of the M-phase solid-solution are observed, which are agreed with the previous reports. 12,13 And no secondary phases could be detected for the B<sub>2</sub>O<sub>3</sub>-doped ceramics presumably because of its low mass fraction, which is coincident with the EDS results. In addition, it is found that the diffraction peak positions of the B<sub>2</sub>O<sub>3</sub>-doped ceramics have small shift compared with the pure LiNb<sub>0.6</sub>Ti<sub>0.5</sub>O<sub>3</sub> ceramic. With the B<sub>2</sub>O<sub>3</sub> content increasing from 0 to 1.5 wt.%, the peak positions shift to lower  $2\theta$  angles. This phenomenon is similar with that reported by Kang et al.<sup>8</sup> However, the peak positions shift towards higher diffraction angles when 2 wt.% B2O3 added. For the specimens sintered at other temperatures, the similar tendency of XRD patterns has also been observed.

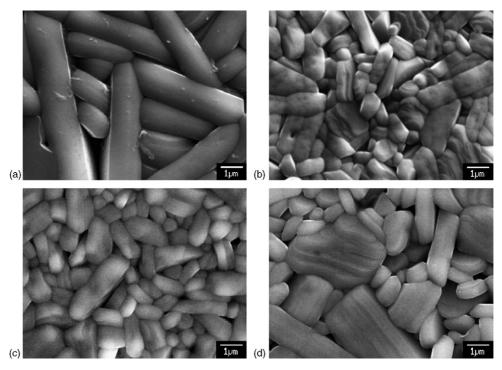



Fig. 2. The SEM micrographs of LiNb $_{0.6}$ Ti $_{0.5}$ O $_3$  ceramics doped with (a) 0 wt.%  $B_2$ O $_3$  sintered at 1100 °C and (b) 1 wt.%, (c) 1.5 wt.%, and (d) 2 wt.%  $B_2$ O $_3$  sintered at 880 °C.

The microwave dielectric properties of LiNb<sub>0.6</sub>Ti<sub>0.5</sub>O<sub>3</sub> ceramics doped with B<sub>2</sub>O<sub>3</sub> as a function of sintering temperature are shown in Figs. 4–6. In these figures, plots on the vertical axis show the properties of undoped LiNb<sub>0.6</sub>Ti<sub>0.5</sub>O<sub>3</sub> ceramic sintered at 1100 °C. The relationship between  $\varepsilon_r$  values and sintering temperature show the similar trend as that between densities and sintering temperature. This result suggests that the bulk density of the sintered ceramics determine, to an extent, the dielectric constant of the sintered ceramics. Probably due to

(d) (e) (b) (a) 220 22.5 23.0 23.5 24.0 24.5 25.0 2 wt.%

(b) (c) 1.5 wt.%

(c) 1 wt.%

(a) 0 wt.%

20 30 40 50 60 70

20 value

Fig. 3. X-ray diffraction spectra of (a) the undoped LiNb $_{0.6}$ Ti $_{0.5}$ O $_{3}$  ceramic sintered at  $1100\,^{\circ}$ C and the ceramics with (b) 1 wt.%, (c) 1.5 wt.%, and (d) 2 wt.% additions sintered at 860  $^{\circ}$ C.

the uniform microstructures and high densities, higher dielectric constant than that of the undoped LiNb $_{0.6}$ Ti $_{0.5}$ O $_3$  ceramic sintered at 1100 °C could be obtained for 1 and 1.5 wt.% B $_2$ O $_3$ -doped specimens sintered at 840–880 °C.

Fig. 5 shows the  $Q \times f$  values of B<sub>2</sub>O<sub>3</sub>-doped LiNb<sub>0.6</sub>Ti<sub>0.5</sub>O<sub>3</sub> ceramics as a function of sintering temperature. The  $Q \times f$  values of all the samples with B<sub>2</sub>O<sub>3</sub>-doped had some decrease than that of undoped LiNb<sub>0.6</sub>Ti<sub>0.5</sub>O<sub>3</sub> ceramic. With 1–2 wt.% B<sub>2</sub>O<sub>3</sub> addition, the  $Q \times f$  value variation revealed similar tendency with the apparent density and dielectric constant as shown in Figs. 1 and 4. In Fig. 5 it could also be found that the  $Q \times f$  values of LiNb<sub>0.6</sub>Ti<sub>0.5</sub>O<sub>3</sub> ceramics with 2 wt.% B<sub>2</sub>O<sub>3</sub> is much

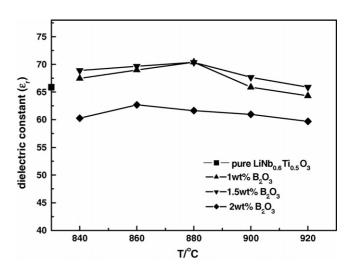



Fig. 4. The dielectric constant values of LiNb $_{0.6}$ Ti $_{0.5}$ O $_3$  ceramics with B $_2$ O $_3$  additions as a function of sintering temperature.

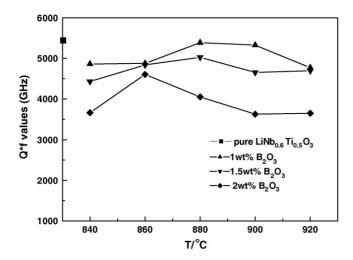



Fig. 5. The  $Q \times f$  values of LiNb<sub>0.6</sub>Ti<sub>0.5</sub>O<sub>3</sub> ceramics with B<sub>2</sub>O<sub>3</sub> additions as a function of sintering temperature.

lower than that with 1 and 1.5 wt.% B<sub>2</sub>O<sub>3</sub> additions. As we know, the microwave dielectric loss includes not only intrinsic losses which were mainly caused by the lattice vibrational modes but also extrinsic losses dominated by densification/porosity, the secondary phases, grain sizes and oxygen vacancies. 14 Some investigations 15,16 also reported that the  $Q \times f$  value is independent of the density and the porosity for a theoretical density higher than 90%. As for the 1-2 wt.% B<sub>2</sub>O<sub>3</sub>-doped LiNb<sub>0.6</sub>Ti<sub>0.5</sub>O<sub>3</sub> ceramics, the densities are all higher than 90%, and the secondary phase and charge unbalance are also not possible, so the grain morphology is suggested to dominate the  $Q \times f$  values. More uniform grain morphology for 1 and 1.5 wt.% B<sub>2</sub>O<sub>3</sub> addition than that for the 2 wt.% B<sub>2</sub>O<sub>3</sub> addition in Fig. 2 may mean reductions in lattice imperfection as well as dielectric loss. <sup>14</sup> From Figs. 4 and 5, it could be seen that the good dielectric properties of  $\varepsilon_r = 70$  and  $Q \times f = 5400$  GHz could be obtained at 880 °C when 1 wt.% B<sub>2</sub>O<sub>3</sub> added, which is superior to that of pure LiNb<sub>0.6</sub>Ti<sub>0.5</sub>O<sub>3</sub> ceramic ( $\varepsilon_r = 66$ ,  $Q \times f = 5432$  GHz) sintered at 1100 °C.

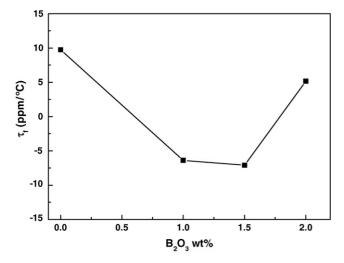



Fig. 6. The  $\tau_f$  values of LiNb<sub>0.6</sub>Ti<sub>0.5</sub>O<sub>3</sub> ceramics doped with different amount B<sub>2</sub>O<sub>3</sub> additions sintered at 880 °C.

The  $\tau_f$  values of the B<sub>2</sub>O<sub>3</sub>-ceramics sintered at 880 °C are illustrated in Fig. 6. From Fig. 6 it could be found that the  $\tau_f$  value was first decreased from 9.7 to  $-7.1 \text{ ppm/}^{\circ}\text{C}$  as the B<sub>2</sub>O<sub>3</sub> content increased from 0 wt.% B<sub>2</sub>O<sub>3</sub> to 1.5 wt.%, which is similar as the results when 0.17Li<sub>2</sub>O-0.83V<sub>2</sub>O<sub>5</sub> was used as additives reported in Ref. 8. However, the  $\tau_f$  value then increases to 6.5 ppm/°C when B<sub>2</sub>O<sub>3</sub> content increases to 2 wt.%. These strange results could be attributed to the tendency of XRD peak shift which have been introduced in Ref. 8. Kang et al. 8 found that the  $\tau_f$  value shifted to negative direction with the XRD peak shifting to lower angles. Combining Figs. 4 with 6, the similar consistency of the variation of  $\tau_f$  values and the tendency of XRD peak shift could also be observed. Although the reasons for the variation of the  $\tau_f$  values are unclear now, it could be reasonably believed that the liquid phase and distortion of crystal lattice should be responsible for the variation of the  $\tau_f$  value. Moreover, it implies that the addition of appropriate  $B_2O_3$  content could adjust the  $\tau_f$  value of pure LiNb<sub>0.6</sub>Ti<sub>0.5</sub>O<sub>3</sub> ceramic close to zero. In general, the LiNb<sub>0.6</sub>Ti<sub>0.5</sub>O<sub>3</sub> ceramics with small amount of B2O3 additions such as 1 wt.% B2O3 addition have good dielectric properties of  $\varepsilon_r = 70$ ,  $Q \times f = 5400$  GHz, and  $\tau_{\rm f} = -6.39 \, \rm ppm/^{\circ} C$ .

## 4. Conclusions

The sintering characteristics, microstructure and microwave dielectric properties of the M-phase LiNb<sub>0.6</sub>Ti<sub>0.5</sub>O<sub>3</sub> ceramic with different B<sub>2</sub>O<sub>3</sub> additions have been investigated systematically in this study. By adding 1–2 wt.% B<sub>2</sub>O<sub>3</sub>, the LiNb<sub>0.6</sub>Ti<sub>0.5</sub>O<sub>3</sub> ceramic could be successfully sintered at low temperatures around 880 °C. These low-fired LiNb<sub>0.6</sub>Ti<sub>0.5</sub>O<sub>3</sub> ceramics exhibit good microwave dielectric properties. Typically, the good dielectric properties of  $\varepsilon_{\rm r}$  = 70,  $Q \times f$  = 5400 GHz,  $\tau_{\rm f}$  = -6.39 ppm/°C are obtained for the LiNb<sub>0.6</sub>Ti<sub>0.5</sub>O<sub>3</sub> ceramics with 1 wt.% B<sub>2</sub>O<sub>3</sub> sintered at 880 °C, which are promising for the application of multiplayer microwave components using Ag as an inner electrode.

#### References

- Wakino, K. T., Nishikawa, Y. and Ishikawa, H. T., Dielectric resonator materials and their applications for mobile communication systems. *Br. Ceram. Trans. J.*, 1990, 89, 39–43.
- Hughes, H., Iddles, D. M. and Reaney, I. M., Niobate-based microwave dielectrics suitable for third generation mobile phone base stations. *Appl. Phys. Lett.*, 2001, 79, 2952–2954.
- Ling, H. C., Yan, M. F. and Rhodes, W. W., High dielectric constant and small temperature coefficient bismuth-based dielectric compositions. *J. Mater. Res.*, 1990, 5, 1752–1756.
- Kim, H. T., Kim, S. H., Nahm, S., Byun, J. D. and Kim, Y., Low-temperature sintering and microwave dielectric properties of zinc metatitanate-rutile mixtures using boron. *J. Am. Ceram. Soc.*, 1999, 82(11), 3043–3048.
- Villafuerte-Castrejón, M. E., Aragón-Piña, A., Valenzuela, R. and West, A. R., Compound and solid-solution formation in the system Li<sub>2</sub>O-Nb<sub>2</sub>O<sub>5</sub>-TiO<sub>2</sub>. J. Solid State Chem., 1987, 71, 103-108.
- 6. Borisevich, A. Y. and Davies, P. K., Microwave dielectric properties of  $\text{Li}_{1+x-y}\text{Nb}_{1-x-3y}\text{Ti}_{x+4y}\text{O}_3$  (M = Nb<sup>5+</sup>, Ta<sup>5+</sup>) solid solutions. *J. Eur. Ceram. Soc.*, 2001, **21**, 1719–1722.
- Borisevich, A. Y. and Davies, P. K., Effect of V<sub>2</sub>O<sub>5</sub> doping on the sintering and dielectric properties on M-Phase Li<sub>1+x-y</sub>Nb<sub>1-x-3y</sub>Ti<sub>x+4y</sub>O<sub>3</sub> ceramics. J. Am. Ceram. Soc., 2004, 87, 1047–1052.

- Kang, D. H., Nam, K. C. and Cha, H. J., Effect of Li<sub>2</sub>O–V<sub>2</sub>O<sub>5</sub> on the low temperature sintering and microwave dielectric properties of Li<sub>1.0</sub>Nb<sub>0.6</sub>Ti<sub>0.5</sub>O<sub>3</sub> ceramics. *J. Eur. Ceram. Soc.*, 2006, 26, 2117–2121.
- Kim, D. W., Hong, K. S., Yoon, C. S. and Kim, C. K., Low-temperature sintering and microwave dielectric properties of Ba<sub>5</sub>Nb<sub>4</sub>O<sub>15</sub>–BaNb<sub>2</sub>O<sub>6</sub> mixtures for LTCC applications. *J. Eur. Ceram. Soc.*, 2003, 23(14), 2597–2601.
- Hakki, B. W. and Coleman, P. D., A dielectric resonator method of measuring inductive capacities in the millimeter range. *IRE Trans. MTT*, 1960, 8, 402–410.
- Courtney, W. E., Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave insulators. *IEEE Trans. MTT*, 1970, 18, 476–485.
- Smith, R. I. and West, A. R., Characterisation of an incommensurate LiTiNb oxide. *Mater. Res. Bull.*, 1992, 27, 277–285.
- 13. Borisevich, A. Y. and Davies, P. K., Crystalline structure and dielectric properties of Li<sub>1+x-y</sub>Nb<sub>1-x-3y</sub>Ti<sub>x+4y</sub>O<sub>3</sub> M-Phase solid solutions. *J. Am. Ceram. Soc.*, 2002, **85**(3), 915–924.
- Silverman, B. D., Microwave absorption in cubic strontium titanate. *Phys. Rev.*, 1962, 125, 1921–1930.
- Kim, W. S., Hong, T. H., Kim, E. S. and Yoon, K. H., Microwave dielectric properties and far infrared reflectivity spectra of the (Zr<sub>0.8</sub>Sn<sub>0.2</sub>)TiO<sub>4</sub> ceramics with additives. *Jpn. J. Appl. Phys.*, 1998, 37, 5367–5371.
- Huang, C. L. and Weng, M. H., Liquid phase sintering of (Zr,Sn)TiO<sub>4</sub> microwave dielectric ceramics. *Mater. Res. Bull.*, 2000, 35, 1881–1888.