

Journal of the European Ceramic Society 27 (2007) 2153-2161

www.elsevier.com/locate/jeurceramsoc

The effect of different sintering additives on the electrical and oxidation properties of Si₃N₄–MoSi₂ composites

Zhiquan Guo^a, Gurdial Blugan^a, Thomas Graule^a, Mike Reece^b, Jakob Kuebler^{a,*}

^a Empa, Material Science and Technology, Laboratory for High Performance Ceramics, Ueberlandstrasse 129, Duebendorf CH-8600, Switzerland

^b Queen Mary, University of London, Mile End Road, London E2 4NS, UK

Received 22 April 2006; received in revised form 28 June 2006; accepted 7 July 2006 Available online 11 September 2006

Abstract

The fabrication and properties of electrically conductive Si_3N_4 –Mo Si_2 composites using two different sintering additive systems were investigated (i) Y_2O_3 –Al $_2O_3$ and (ii) Lu_2O_3 . It was found that the sintering atmosphere used (N_2 or Ar) had a critical influence on the final phase composition because Mo Si_2 reacted with N_2 atmosphere during sintering resulting in the formation of Mo_5Si_3 . The electrical conductivity of the composites exhibited typical percolation type behaviour and the percolation concentrations depended on the type of sintering additive and atmosphere used. Metallic-like conduction was the dominant conduction mechanism in the composites with $MoSi_2$ content over the percolation concentrations due to the formation of a three-dimensional percolation network of the conductive $MoSi_2$ phase. The effect of the sintering additives on the electrical and oxidation properties of the composites at elevated temperatures was investigated. Parabolic oxidation kinetics was observed in the composites with both types of additives. However, the Lu_2O_3 -doped composites had superior oxidation resistance compared to the composites containing Y_2O_3 -Al $_2O_3$. It is attributed to the higher eutectic temperature and crystallisation of the grain boundary phase and the oxidation layer in the Lu_2O_3 -doped composites. © 2006 Elsevier Ltd. All rights reserved.

Keywords: Hot pressing; Composites; Electrical conductivity; Si₃N₄; Sintering additives

1. Introduction

Silicon nitride (Si₃N₄) is an important high-temperature structural ceramic due to its combination of excellent oxidation resistance and high strength at elevated temperatures. However, the widespread application of Si₃N₄ materials is limited by their relatively low fracture toughness when compared to metals. Another major barrier is the cost of manufacture. Since Si₃N₄-based materials possess high hardness, ¹ hence expensive diamond machining is normally required to produce Si₃N₄-based components. The addition of particulate reinforcements to Si₃N₄ can increase the toughness of the materials by mechanisms including residual stresses generated by the mismatch of coefficients of thermal expansion (CTE), crack bridging and crack deflection.^{2,3}

The inclusion of a certain amount of electroconductive particles into the insulating Si₃N₄ matrix can lead to electrically

conductive composites, this can facilitate machining of these composites into complex shapes by the more economical electrical discharge machining (EDM).⁴ Various Si₃N₄ composites with addition of an electroconductive secondary phase, such as TiN,³ TiB₂,⁵ TaN,^{6,7} TiC⁸ and MoSi₂,^{9,10} have been studied. Among them, Si₃N₄-MoSi₂ composites are of special interest. MoSi₂ is a high-melting-point (2030 °C) intermetallic material with high electrical conductivity ($\sim 2 \times 10^5 \,\Omega^{-1} \,\mathrm{cm}^{-1}$ at room temperature). MoSi₂ has superior high-temperature oxidation resistance compared with the other aforementioned reinforcement phases. It has been reported that the presence of MoSi₂ phase in a Si₃N₄ matrix leads to a better oxidation resistance compared with monolithic Si₃N₄. 11 According to a study of Klemm et al..¹² the formation of a Si₂N₂O layer underneath the surface as an oxidation product is responsible for the improvement of oxidation resistance. Si₃N₄-MoSi₂ composites have great potential for high-temperature electrical applications. For instance, it has been used as heating elements of ceramic glow plugs for diesel engines.¹³ However, only limited data on the electrical conductivity of Si₃N₄-MoSi₂ composites is available in the literature. ^{13,14}

^{*} Corresponding author. Tel.: +41 44 8234223; fax: +41 44 8234150. E-mail address: jakob.kuebler@empa.ch (J. Kuebler).

Si₃N₄ is a highly covalent material and has low selfdiffusivity. Full densification of Si₃N₄ ceramics cannot be achieved by conventional solid state sintering. Usually rare-earth (RE) oxides, e.g. Y_2O_3 , ¹⁵ Yb_2O_3 , ¹⁶ Sm_2O_3 ¹⁶ and Gd_2O_3 , ¹⁶ or oxide mixtures, e.g. Y_2O_3 -Al $_2O_3$ ¹⁷ and Y_2O_3 -SiO $_2$, ¹⁸ are used as sintering aids to promote the densification by liquid phase sintering. This can lead to amorphous grain boundary phases being formed from the remaining liquid phase upon cooling. The nature of the grain boundary phase effectively controls their mechanical properties and oxidation resistance at elevated temperatures. $^{17,1\bar{9},20}$ It was reported recently that Si_3N_4 doped with Lu₂O₃ as the sintering additive shows the best oxidation resistance²¹ and the highest strength at 1500 °C²² ever reported for Si₃N₄ materials. This is closely associated with the crystallisation of the grain boundary phase.²³ It can be expected that the use of Lu₂O₃ as the sintering additive for Si₃N₄–MoSi₂ composites can also improve the oxidation resistance and hightemperature properties.

In this work, we report the fabrication of two different Si_3N_4 –Mo Si_2 composites, using (i) Y_2O_3 –Al $_2O_3$ (YAG) and (ii) Lu $_2O_3$ as sintering additives. Their electrical conductivity at temperatures up to $1250\,^{\circ}C$ and the oxidation behaviour at $1500\,^{\circ}C$ were studied.

2. Experimental procedure

Si₃N₄-MoSi₂ composites with up to 60 vol.% MoSi₂ were synthesized using commercial Si₃N₄ (grade M11, H.C. Starck, Germany) and MoSi₂ (grade C, H.C. Starck, Germany) powders. Two types of composites with different sintering additives were prepared: Si₃N₄-MoSi₂-Y₂O₃ + Al₂O₃, designated as SMY, and Si₃N₄-MoSi₂-Lu₂O₃, designated as SML. For the SMY composites, 1.5 vol.% Al₂O₃ (CT3000 SG, Bassermann Minerals, Germany) and 3.5 vol.% Y₂O₃ (grade C, H.C. Starck, Germany) were used as the sintering additives. For the SML composites, 5 vol. % Lu₂O₃ (99.9% pure, Metall Rare Earth Ltd., China) was added to the starting powders as the sintering aid. The starting powders were mixed in isopropanol by a planetary mill (PM400, Retsch) for 4 h. Additionally 1 wt.% polyvinyl butyral (PVB) (Mowital B 20H, Clariant GmbH, Germany) as binder was added to the dispersion after the milling process. The wet powder mixture was then dried in a rotary evaporator and passed through a 200 µm sieve. This precursor powder was compacted by uniaxial pressing to produce disc-shaped green bodies with a diameter of 20 mm. The powder compacts were sintered in BN-coated graphite dies by hot pressing (Model 383-40, Thermal Technology Inc.) under a mechanical pressure of 30 MPa in 1 atm N₂ or Ar atmosphere. Due to the different eutectic temperatures of Y₂O₃-Al₂O₃-SiO₂ and Lu₂O₃-SiO₂, different sintering temperatures were used in the SMY and SML composites. The sintering temperatures were 1700 °C for the SMY composites and 1800 °C for the SML composites.

The densities of the sintered composites were measured by Archimedes method. It was found that all the produced materials were >98% of their theoretical density. Specimens were polished and plasma etched for the microstructural analysis using a scanning electron microscopy (SEM) (VEGA TS 5136 Tescan,

CZ). The grain diameter was measured using the linear intercept method as described in EN 623-3 standard.²⁴ The roomtemperature electrical conductivity of the composites was determined by the van der Pauw method.²⁵ The high-temperature dc electrical conductivity of Si₃N₄-MoSi₂ composites was measured using a four-probe method in accordance with ASTM standard F43-93.²⁶ Disc-shaped specimens with 18 mm in diameter and 2 mm in thickness were used for the oxidation tests. The oxidation experiments were carried out at 1500 °C in air with a heating/cooling rate of 5 °C/min in an electrical resistance furnace (FHT 1750, Ceram-Aix, Germany). The specimens were removed from the furnace at intervals of 1, 1, 2, 4, 8, 16, 32 and 64 h for weighing on an analytical balance with an accuracy of ± 0.001 mg (MX/UMX, Mettler Toledo, Switzerland). X-ray diffraction (XRD) (PANalytical PW 3040/60 X'Pert PRO) was used to determine the crystalline phases of both as-sintered and oxidized specimens.

3. Results and discussion

3.1. Phase compositions and microstructure

The Si_3N_4 –Mo Si_2 composites containing YAG or Lu_2O_3 as sintering additives were consolidated by hot-pressing in Ar or N_2 atmospheres. The phase compositions of the resultant composites are shown in Fig. 1. The XRD spectra indicate that the selection of the sintering atmospheres (Ar or N_2) has a critical influence on the final phase compositions. The SMY composites consolidated in Ar atmosphere contained β -Si $_3N_4$ and MoSi $_2$ phases. No crystallised grain boundary phase was observed. However, when N_2 was used as the sintering atmosphere, Mo $_5Si_3$ phase, instead of MoSi $_2$ phase, was identified. These results indicate that MoSi $_2$ reacted with N_2 atmosphere to form Mo $_5Si_3$ during the sintering process. The possible reaction is proposed by the following equation:

$$15\text{MoSi}_2(s) + 14\text{N}_2(g) \rightarrow 3\text{Mo}_5\text{Si}_3(s) + 7\text{Si}_3\text{N}_4(s)$$
 (1)

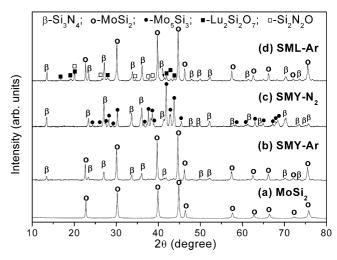


Fig. 1. X-ray diffraction patterns of (a) $MoSi_2$ powder, the Si_3N_4 - $MoSi_2$ composites with $Y_2O_3 + Al_2O_3$ additives (SMY) sintered in (b) Ar or (c) N_2 ; (d) the Si_3N_4 - $MoSi_2$ - Lu_2O_3 composite (SML) sintered in Ar.

In the literature, Si_3N_4 –MoSi $_2$ composites are normally consolidated by hot-pressing at temperatures from 1650 to 1840 °C in Ar, 10 N $_2$ or vacuum. 14 It was reported in all of these studies that Si_3N_4 and MoSi $_2$ are thermodynamically stable. Our findings contradict the results found by Kao, 27 who did not notice any reaction or decomposition of the compacts of Si_3N_4 and MoSi $_2$ powders during hot-pressing at 1650 °C in 1 atm N $_2$. To understand our results, the thermodynamics of the reaction needs to be considered. Using the thermodynamic data given by Barin and Platzki, 28 the Gibbs free energy changes ΔG_1° (kJ mol $^{-1}$) of Eq. (1) can be obtained as a function of temperature (°C) using the following equation:

$$\Delta G_1^{\circ} = -4276.8 + 2.1555T \tag{2}$$

This calculation indicates that in 1 atm N_2 atmosphere, the Gibbs free energy change ΔG_1° is negative at temperatures lower than 1711.13 °C, and hence the reaction (Eq. (1)) should proceed towards the right-side and form Mo_5Si_3 and Si_3N_4 phases. Therefore, our results are supported by the prediction of this thermodynamic calculation. According to the study of the $Mo_5Si_3N_4$ system by Heikinheimo et al. 29 , $MoSi_2$ phase is in equilibrium with Si_3N_4 at low N_2 partial pressure ($\sim 10^{-4}$ bar) at 1300 °C. However, the formation of Mo_5Si_3 is thermodynamically favourable at N_2 partial pressure between 0.03 and 7 bar. This may explain why the reaction did not occur during the sintering of Si_3N_4 – $MoSi_2$ composites in an Ar atmosphere.

The XRD pattern of the Lu_2O_3 -doped Si_3N_4 -MoSi₂ composites, which was sintered in Ar, is also shown in Fig. 1. The four crystalline phases identified from the XRD pattern were β -Si₃N₄, MoSi₂, $Lu_2Si_2O_7$ and Si₂N₂O. $Lu_2Si_2O_7$ and Si₂N₂O were crystallised as secondary phases. They were formed from the reaction of Lu_2O_3 , Si_3N_4 and SiO_2 , the latter is always present on the surface of the Si_3N_4 and MoSi₂ powders. The possible reaction is given in the following equation:

$$Lu_2O_3 + Si_3N_4 + 3SiO_2 \rightarrow Lu_2Si_2O_7 + 2Si_2N_2O$$
 (3)

It has been reported that Si_3N_4 doped with lanthanide rareearth oxides (RE₂O₃, RE=Sm, Gd, Dy, Er and Yb) also contains RE₂Si₂O₇ and Si₂N₂O as the grain boundary phases. ¹⁶ Since the electronic configuration in all lanthanide ions (RE³⁺), including Lu³⁺, is very similar, the chemistry within these group is very similar as well. ¹⁶ Therefore, the reaction as described by Eq. (3) is expected. Compared to Y₂O₃–Al₂O₃ (YAG) sintering additives, which resulted in amorphous boundary phase, Lu₂O₃ produced grain boundary phase with extensive crystallization, ²³ which improves the material properties including high-temperature strength and oxidation resistance. ^{21,22}

The microstructures of the composites with 40 vol.% $MoSi_2$ are shown in Fig. 2. The brighter grains were $MoSi_2$ (or Mo_5Si_3) particles and the darker grains were the Si_3N_4 matrix. Fig. 2(a) and (b) were obtained from the composites produced using the same starting powder (Si_3N_4 –40 vol.% $MoSi_2$ –YAG), but sintered in different atmospheres: N_2 for Fig. 2(a) and Ar for Fig. 2(b). It was found that the resultant volume fraction of the Mo_5Si_3 phase in the composite sintered in N_2 was significantly smaller than that of the $MoSi_2$ phase in the composite

sintered in Ar. The volume fraction of the remaining Mo₅Si₃ phase in the composites sintered in N₂ was roughly 20 vol.%, i.e. only half of the MoSi2 volume fraction in the starting powder. This can be explained by the reaction (Eq. (1)) of MoSi₂ and N2 during the sintering process, resulting in formation of additional Si₃N₄ in the composite. The Mo₅Si₃ is also an electrical conductor ($\sim 10^{-5} \Omega$ cm), however the resulting volume fraction of the Mo₅Si₃ conductive phase in the composite sintered in N₂ was below the percolation concentration, which is approximately 30 vol.% for Si₃N₄-MoSi₂ composites. ¹⁴ This leads to a very high resistivity (>10 $^{10}\,\Omega$ cm) of the composite sintered in N2, while the composite sintered in Ar was a good conductor ($\sim 10^{-3} \Omega$ cm). It was also found that MoSi₂ grains in the SML-40 specimen (Fig. 2(c)) were significantly larger than that in the SMY-40 specimen. The results of the MoSi₂ grain size measurements on these two materials are plotted in the Fig. 2(d). It indicates that the mean grain size (d_m) of MoSi₂ in the SML-40 (1.95 µm) was nearly double of that in the SMY-40 composites (1.08 μm). This difference can be attributed to the different sintering conditions. The sintering temperature for the Lu₂O₃-doped materials was 100 °C higher than that used for the YAG-doped materials.

3.2. Electrical properties

Note that all the material properties mentioned in the following text are from the composites fabricated in an Ar atmosphere. The room-temperature electrical conductivity as a function of MoSi₂ volume fraction for YAG and Lu₂O₃-doped Si₃N₄-MoSi₂ is shown in Fig. 3. It shows that the electrical conductivity of the composites increased with MoSi2 volume fraction in a manner typical for percolation systems as described below. At low MoSi₂ concentrations, the isolated MoSi₂ particles were dispersed in the insulating Si₃N₄ matrix and hence the electrical conductivity is very low. A steep rise of conductivity was seen when the MoSi₂ concentration reached a critical value, i.e. the percolation concentration, when the first threedimensional conductive network occurred. At the percolation concentration, the distribution state of MoSi₂ particles changed from a dispersive distribution to a network distribution. Above the percolation threshold, the electrical conductivity, ranged from 10^2 to $10^5 \Omega^{-1}$ cm⁻¹, increased slowly with the MoSi₂ content, which was related to the increase of the density of conductive percolating paths. Percolation of the MoSi₂ phase started at approximately 27 and 32 vol.% for the SMY and the SML composites, respectively. The difference in the percolation concentration was related to the difference in grain diameter of MoSi₂ phase in these two types of composites. As mentioned, the grain size of MoSi₂ in the Lu₂O₃-doped materials was twice as large as that in the YAG-doped composites. According to the geometrical percolation model presented by Malliaris and Turner, ³⁰ the percolation concentration of a conductor–insulator type composite increases inversely with the ratio of diameters of insulating particles to conductive particles. In Yamada's experimental study, ¹³ it was shown that the percolation concentration of Si₃N₄-MoSi₂ composites is sensitive to the diameter ratio of the Si₃N₄ to MoSi₂ phase. A Si₃N₄-MoSi₂ composite con-

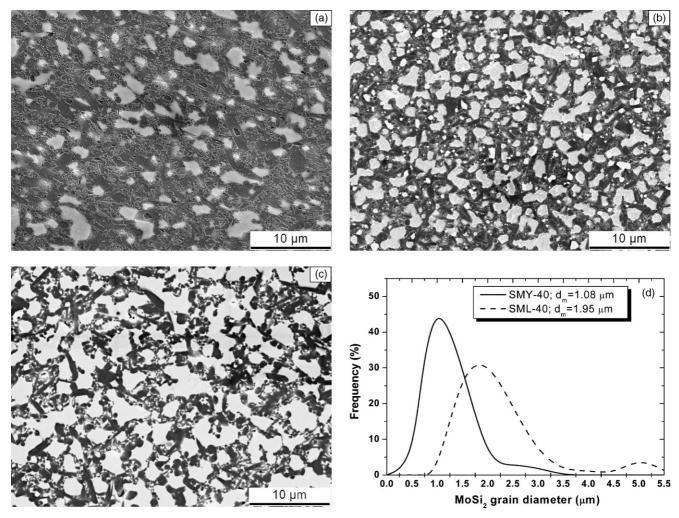


Fig. 2. SEM micrographs of the SMY-40 composites sintered in (a) N₂ and (b) Ar, and (c) the SML-40 composite sintered in Ar; (d) the histogram of the MoSi₂ grain diameter, measured by the linear intercept method, in SMY-40 and SML-40 composites sintered in Ar.

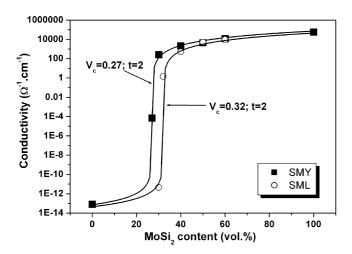


Fig. 3. Room-temperature electrical conductivity of the Si_3N_4 –MoSi $_2$ composites containing $Y_2O_3 + Al_2O_3$ (SMY) or Lu_2O_3 (SML) as the sintering additives as a function of the MoSi $_2$ volume fraction; the data are fitted with GEM equation (solid line) with a t value of 2.

taining 30 wt.% $MoSi_2$ was changed from a good conductor ($\sim 10^{-2}~\Omega$ cm) to an insulator ($\sim 10^{-10}~\Omega$ cm) by decreasing the diameter ratio of Si_3N_4 to $MoSi_2$ particles from 10:1 to 3:1. Given the fact that the size of Si_3N_4 grains in both composites in the current study was very similar, the larger $MoSi_2$ grain size in the SML composites leads to a lower ratio of diameters of the insulating/conductive particles and therefore a higher percolation concentration in the SML composites. The obtained conductivity data was fitted with the general effective media (GEM) equation proposed by McLachlan et al. 31 :

$$\frac{f(\sigma_{\rm m}^{1/t} - \sigma_{\rm comp}^{1/t})}{\sigma_{\rm m}^{1/t} + A\sigma_{\rm comp}^{1/t}} + \frac{(1 - f)(\sigma_{\rm p}^{1/t} - \sigma_{\rm comp}^{1/t})}{\sigma_{\rm p}^{1/t} + A\sigma_{\rm comp}^{1/t}} = 0$$
 (4)

where $\sigma_{\rm comp}$, $\sigma_{\rm m}$, $\sigma_{\rm p}$ are the electrical conductivities of the composite, the insulating phase (Si₃N₄) and the conductive phase (MoSi₂), respectively; f the volume fraction of the conductive phase; $f_{\rm c}$ the percolation concentration. A is equal to $f_{\rm c}/(1-f_{\rm c})$. The critical exponent, t, is a phenomenological parameter that characterises the composite microstructure, which ranges normally between 1 and 4.49. The result of the fitting is shown as

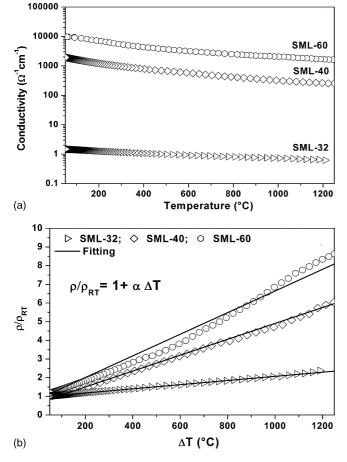


Fig. 4. (a) Electrical conductivity vs. temperature for the Si_3N_4 –Mo Si_2 –Lu₂O₃ composites with 32 vol.% (SML-32), 40 vol.% (SML-40) and 60 vol.% (SML-60) Mo Si_2 ; (b) plots of ρ/ρ_{RT} vs. ΔT , the slopes of the straight lines are equal to the temperature coefficient of resistivity (α).

solid lines in Fig. 3. A good correlation between the measured data and the theoretical prediction was obtained using a value of t of 2.0.

To use Si_3N_4 –Mo Si_2 composites in high-temperature electrical devices, it is important to consider its electrical properties at elevated temperatures. For the first time, we report the temperature dependence of the electrical conductivity of the Si_3N_4 –Mo Si_2 –Lu₂O₃ composites at temperatures up to $1250\,^{\circ}$ C, as shown in Fig. 4(a). The composites containing 32, 40 and 60 vol.% Mo Si_2 exhibited positive temperature coefficient of resistivity (PTCR) over the whole temperature range, which indicates that metallic-like electron conduction was the dominant conduction mechanism. Since the electrical conductivity of Si_2 ($\sim 10^5 \, \Omega^{-1} \, \text{cm}^{-1}$) is 18 orders of magnitude higher than that of Si_3N_4 ($\sim 10^{-13} \, \Omega^{-1} \, \text{cm}^{-1}$), electrons are transported dominantly through the conductive Mo Si_2 percolating paths. The temperature coefficient of resistivity (TCR) is one of the most important characteristic parameters for a conductor and it can be calculated according to the following equation Si_3 :

$$\frac{\rho}{\rho_{\rm RT}} = 1 + \alpha \Delta T \tag{5}$$

where ρ is the electrical resistivity at a given temperature (T); ρ_{RT} the electrical resistivity at room temperature (T_{RT}) ; α the tem-

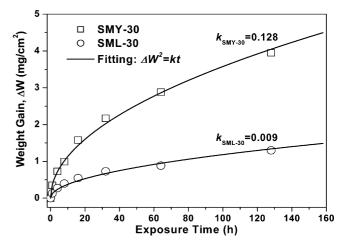
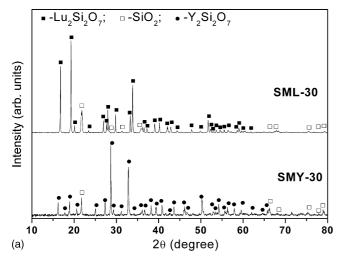


Fig. 5. Plots of the specific weight gain as a function of exposure time for the SMY-30 and the SML-30 composites oxidized at $1500\,^{\circ}$ C in air.

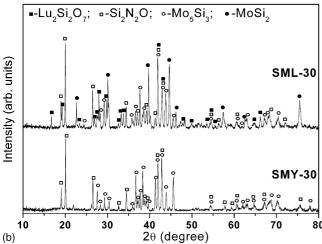

perature coefficient of resistivity (TCR); ΔT is equal to $T - T_{RT}$. The TCRs of the composites were obtained from the slope of the ρ/ρ_{RT} versus ΔT plots, as shown in Fig. 4(b). The discrepancy of the data points from the straight lines in Fig. 4(b) may be due to the error induced by the surface oxidation during the measurements at high-temperatures. It was found that the TCRs of Si₃N₄–MoSi₂ composites increased with MoSi₂ volume fraction from $1.1 \times 10^{-3} \, ^{\circ}\text{C}^{-1}$ for the SML-32 composite to $4.3 \times 10^{-3} \, ^{\circ}\text{C}^{-1}$ and $5.8 \times 10^{-3} \, ^{\circ}\text{C}^{-1}$ for the SML-40 and the SML-60 composites, respectively. Similar behaviour was also observed in Al₂O₃–MoSi₂ composites.³³

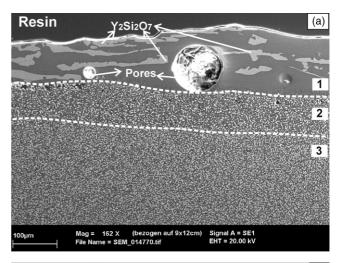
3.3. Oxidation behaviour

Fig. 5 shows the specific weight gain of the $Si_3N_4 + 30$ vol.% MoSi₂ composites doped with YAG (SMY-30) and Lu₂O₃ (SML-30) sintered in Ar during the exposure in air at 1500 °C as a function of oxidation time. The final specific weight gains after 128 h oxidation were 3.95 and 1.30 mg cm⁻² for the SMY-30 and the SML-30 specimens, respectively. These results confirmed that the use of Lu₂O₃ as the sintering additive leads to an improvement in oxidation resistance for Si_3N_4 –MoSi₂ composites. It has been reported that the Lu₂O₃-doped Si_3N_4 materials have an excellent oxidation resistance due to the high melting point and crystallisation of the grain boundary phase. ^{21,34} Our finding shows that the same is true for Si_3N_4 –MoSi₂ composites. The oxidation behaviours of tested specimens approximately obeyed a parabolic law as described in the following equation:

$$\Delta W^2 = kt \tag{6}$$

where ΔW is the specific weight gain; t the exposure time and k is the parabolic oxidation rate constant at a given temperature. The parabolic rate constants, k, were obtained by fitting the weight gain data with Eq. (6), and were 0.128 and 0.009 mg² cm⁻⁴ h⁻¹ for the SMY-30 and the SML-30 composites, respectively. The parabolic rate constant for the Lu₂O₃-doped Si₃N₄-MoSi₂ composite was about one order of magnitude smaller than that of the YAG-doped one. This is about one order magnitude higher than those of HIPed pure Si₃N₄¹¹ and HPed Lu₂O₃-




Fig. 6. X-ray diffraction patterns of (a) the oxidized surfaces and (b) after removing the oxidized layer for the SMY-30 and the SML-30 composites after oxidation at $1500\,^{\circ}$ C in air for $128\,h$.

doped Si_3N_4 materials.²¹ However, it is difficult to compare the oxidation resistance of monolithic Si_3N_4 and Si_3N_4 –Mo Si_2 composites by only comparing the weight gain and the oxidation rate constant. This is because these two types of materials have different weight balances associated with different oxidation mechanisms.

The XRD analysis on the oxidized surfaces of the SMY-30 and the SML-30 specimens is presented in Fig. 6(a). The oxidized surfaces predominately consisted of crystallised $Y_2Si_2O_7$ or $Lu_2Si_2O_7$ for the SMY-30 and the SML-30 samples, respectively. In addition, crystallised SiO_2 , cristobalite, was also observed in both cases and the intensity of the SiO_2 reflection peaks was stronger in the SML-30 than that in the SMY-30 sample. Mo_5Si_3 and Si_2N_2O phases were detected in the upper bulk after removing the oxidized surface layer, as shown in Fig. 6(b), which is consistent with Klemm's study. ¹² It is proposed that Si_3N_4 and $MoSi_2$ in the surface region were directly oxidized to SiO_2 as described by the following equations:

$$Si_3N_4(s) + 3O_2(g) \rightarrow 3SiO_2(s) + 2N_2(g)$$
 (7)

$$2\text{MoSi}_2(s) + 7\text{O}_2(g) \rightarrow 4\text{SiO}_2(s) + 2\text{MoO}_3(g)$$
 (8)

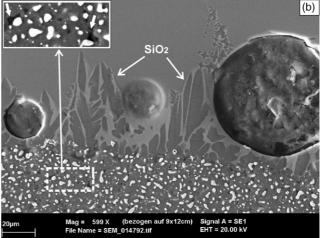
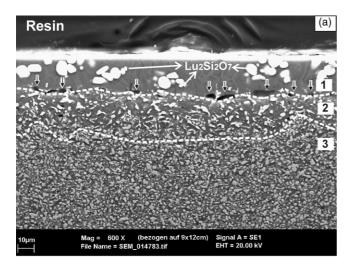



Fig. 7. (a) SEM micrographs of the polished cross-sections of the SMY-30 composites after oxidation at $1500\,^{\circ}$ C in air for $128\,h$. Three layers marked in (a) are: (1) the outer oxidized layer; (2) the MoSi₂-depleted zone; (3) the bulk. (b) The interface region between the outer oxidised layer and the bulk. The inset in (b) is the enlargement of the MoSi₂-depleted region with the arrows indicating the presence of voids.

The presence of $Y_2Si_2O_7$ or $Lu_2Si_2O_7$ crystals on the surfaces was the consequence of the migration of Y^{3+} or Lu^{3+} cations from the unoxidized bulk materials to the surface during the oxidation. The parabolic oxidation kinetics also indicates that the oxidation process was controlled by diffusion, including the inward diffusion of oxygen and outward diffusion of nitrogen and the additive species across the oxidation scale. These diffusion processes occurring during oxidation resulted in an oxidation scale with a complex multi-layered microstructure with a compositional gradient. 11,21

The microstructure of the oxidation scale in the SMY-30 composite is shown in Fig. 7. Approximately three different layers from the outer surface to the bulk were distinguishable. (1) An outer oxidation layer in the YAG-doped composite mainly consisted of amorphous SiO_2 matrix and long-shaped $Y_2Si_2O_7$ crystals. The thickness of this scale was approximately 150 μ m. Large pores, with diameter up to $100 \, \mu$ m, were found in this region as a result of N_2 released by the oxidation reactions. (2) A $MoSi_2$ -depleted intermediate layer located between the

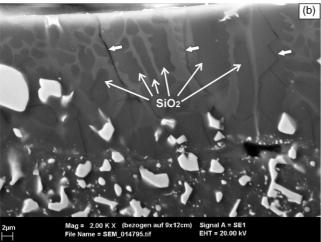


Fig. 8. (a) SEM micrographs of the polished cross-sections of the SML-30 composites after oxidation at $1500\,^{\circ}$ C in air for $128\,h$. Three layers marked in (a) are: (1) the outer oxidized layer; (2) the MoSi₂-depleted zone; (3) the bulk. (b) The high magnification image of the outer oxidized layer. The arrows in (a) indicate the pores trapped in the bottom of the oxidized layer and the arrows in (b) highlight the cracks present in the oxidized layer.

outer oxidation scale and the bulk was observed. Part of the $MoSi_2$ content was oxidized, resulting in a lower $MoSi_2$ content in this region compared with that in the unoxidized samples. The small voids left by outward diffusion of the Y^{3+} and Al^{3+} cations 17 were observed in this region in the SMY-30 specimen, as shown in Fig. 7(b). Additionally, a layer containing dendrite-shaped SiO_2 crystals growing in the direction perpendicular to the surface was located between the outer oxidation scale and the $MoSi_2$ -depleted zone (Fig. 7(b)). The presence of the crystallized SiO_2 intermediate layer may reduce the kinetic of the oxygen diffusion towards the bulk and improve the oxidation resistance of Si_3N_4 – $MoSi_2$ composites. (3) The bulk microstructure similar to that prior to oxidation.

A similar multi-layered microstructure can be seen in the SML-30 composite as well, as shown in Fig. 8. Compared to the SMY-30 specimen, (1) the outer oxidation layer in the Lu₂O₃-doped specimen (SML-30) was much thinner, i.e. \sim 20 μ m. This also indicates that the oxidation rate of the composites containing Lu₂O₃ was lower than that of the YAG-doped composites.

Equiaxed Lu₂Si₂O₇ crystals were found embedded in this layer and small pores were seen trapped at the interface between the oxidized layer and the MoSi₂-depleted zone in the SML-30 sample. Since the outer oxidation layer in the SML-30 specimen was relatively thin, the SiO2 crystals grew through the whole oxidation scale, as shown in Fig. 8(b). The large volume change associated with the crystallisation of SiO₂ leads to cracking in the oxidation layer in the SML-30 composite. (2) The MoSi₂-depleted intermediate layer in the SML-30 sample, with a thickness of $\sim 20 \,\mu\text{m}$, was also much thinner than that in the SMY-30 specimen (\sim 100 μ m). Moreover, the small voids present in the MoSi₂-depleted zone in the SMY-30 specimen were not observed in the SML-30 specimen, which is probably related to the crystallisation of the grain boundaries in the SML-30 composite, which significantly limited the diffusion rate of Lu³⁺ cations. (3) Finally the bulk microstructure as the unoxidized state.

Based on the microstructural analysis, it might be concluded that the most critical step influencing the oxidation process of the Si₃N₄-MoSi₂ composites was the diffusion of oxygen across the protective surface layer at elevated temperatures.³⁵ Therefore a low oxygen diffusion coefficient of the oxidation scale is beneficial for the improvement of the oxidation resistance. It has been reported that pure silica has the lowest oxygen diffusion coefficient.³⁴ Addition of additive cations, such as Al³⁺, Y³⁺ or Lu³⁺, into the silica layer would lower the eutectic temperatures and lead to an increase of oxygen diffusion into the materials. The lowest eutectic temperature in Si₃N₄–SiO₂–Y₂O₃ system is 1450 °C and addition of Al₂O₃ will lower this further, ³⁶ which is significantly lower than that reported of materials only containing Lu₂O₃ as the sintering additive (>1750 °C).³⁴ Therefore, the oxygen diffusion coefficient should be much smaller in the Lu₂O₃-doped composite. Furthermore, the extensive crystallisation in the oxidation scale of the SML-30 sample significantly reduced the oxygen diffusion coefficient and hence the Lu₂O₃doped composite (SML-30) was much more resistant to oxidation than the one containing YAG (SMY-30). Most of the oxygen that diffused through the outer oxidation scale was consumed by the oxidation reaction at the interface between the oxidation layer and the bulk. However, some residual oxygen penetrated via the grain boundaries into the bulk material, leading to the formation of the MoSi₂-depleted zone beneath the outer oxidation layer. The crystallised grain boundary phase in the Lu₂O₃-doped material (SML-30) helped to reduce the oxygen penetration and thus the thickness of the MoSi₂-depleted zone in the SML-30 specimen was much smaller compared to that in the SMY-30 specimen. The low mobility of additive ions in the crystallised grain boundary region of SML-30 also restricted the outwards diffusion of Lu³⁺ cations, which was driven by the chemical gradient between the oxidation scale and the bulk. This resulted in a less severe microstructure modification in the MoSi₂-depleted zone, e.g. no voids or inhomogeneous grain boundary region, in the Lu₂O₃-doped composites. The coefficient of thermal expansion (CTE) is an important issue for designing an environmental barrier coating (EBC). Spalling of the oxidation layers was not observed in both composites and therefore we can assume that the CTEs of oxidation layers match that of the bulk.

4. Conclusions

 Si_3N_4 –MoSi₂ composites with YAG and Lu₂O₃ as sintering additives were produced by hot pressing in N_2 and Ar atmospheres. The electrical and oxidation properties were studied and the following results were obtained:

- (i) MoSi₂ phase reacted with N₂ gas to form Mo₅Si₃ during hot pressing. Such reaction could be suppressed by using Ar as the sintering atmosphere.
- (ii) The grain boundary phase of the YAG-doped Si_3N_4 –Mo Si_2 was mostly amorphous. However, the use of Lu_2O_3 as the sintering additive produced crystallised $Lu_2Si_2O_7$ and Si_2N_2O at the grain boundary phases.
- (iii) The room temperature electrical conductivity data of the YAG and Lu_2O_3 -doped Si_3N_4 -Mo Si_2 composites were successful fitted using GEM equation. The percolation concentrations were \sim 27 and \sim 32 vol.% of Mo Si_2 for the SMY and SML composites, respectively. The composites with Mo Si_2 content above the percolation concentration exhibited positive temperature coefficient of resistivity (PTCR) and metallic-like conduction was the dominant conduction mechanism.
- (iv) Parabolic oxidation kinetic was found in both YAG and Lu_2O_3 -doped Si_3N_4 -Mo Si_2 composites. The parabolic oxidation rate constants were dependent on the type of sintering additive. The Lu_2O_3 -doped Si_3N_4 -Mo Si_2 composite had an oxidation rate constant one order of magnitude smaller than that of the YAG-doped one.
- (v) A higher eutectic temperature and extensive crystallisation of the outer oxidation layer in SML composites was responsible for the superior oxidation resistance.

Acknowledgements

This work was funded by Swiss Commission for Technology and Innovation under TopNano 21 program (grant No. 6620.1). The authors are grateful to H.J. Schindler for his technical assistance.

References

- Zerr, A., Miehe, G., Serghiou, G., Schwarz, M., Kroke, E., Riedel, R. et al., Synthesis of cubic silicon nitride. *Nature*, 1999, 400, 340–342.
- Blugan, G., Hadad, M., Janszak-Rusch, J., Kuebler, J. and Graule, T., Microstructure, mechanical properties and fractography of commercial silicon nitride—titanium nitride composites for wear applications. *J. Am. Ceram.* Soc., 2005, 88, 926–933.
- 3. Gogotsi, Y. G., Review: particulate silicon nitride based composite. *J. Mater. Sci.*, 1994, **29**, 2541–2556.
- 4. Kawano, S., Takahashi, J. and Shimada, S., Fabrication of TiN/Si $_3$ N $_4$ ceramics by spark plasma sintering of Si $_3$ N $_4$ particles coated with nanosized TiN prepared by controlled hydrolysis of Ti(O-*i*-C $_3$ H $_7$) $_4$. *J. Am. Ceram. Soc.*, 2003, **86**, 701–705.
- Huang, J. L., Chen, S. Y. and Lee, M. T., Microstructure, chemical aspects and mechanical properties of TiB₂/Si₃N₄ and TiN/Si₃N₄ composites. *J. Mater. Res.*, 1994, 9, 2349–2354.
- Petrovskya, V. Y. and Rakb, Z. S., Densification, microstructure and properties of electroconductive Si₃N₄-TaN composites. Part I. Densification and microstructure. *J. Eur. Ceram. Soc.*, 2001, 21, 219–235.

- Petrovskya, V. Y. and Rakb, Z. S., Densification, microstructure and properties of electroconductive Si₃N₄-TaN composites. Part II. Electrical and mechanical properties. *J. Eur. Ceram. Soc.*, 2001, 21, 237–244.
- Peni, E., Crampon, J. and Duclos, R., Creep and microstructure of TiC particulate Si₃N₄-based composites. *J. Eur. Ceram. Soc.*, 1991, 8, 311–318.
- Petrovic, J. J., Pena, M. I., Reimans, I. E., Sandlin, M. S., Conzone, S. D., Kung, H. H. et al., Mechanical behaviour of MoSi₂ reinforced-Si₃N₄ Matrix composites. J. Am. Ceram. Soc., 1997, 80, 3070–3076.
- Petrovic, J. J., Pena, M. I. and Kung, H. H., Fabrication and microstructure of MoSi₂ reinforced-Si₃N₄ matrix composites. *J. Am. Ceram. Soc.*, 1997, 80, 1111–1116.
- Klemm, H., Taut, C. and Wötting, G., Long-term stability of nonoxide ceramics in an oxidation environment at 1500 °C. *J. Eur. Ceram. Soc.*, 2003, 23, 619–627.
- Klemm, H., Herrmann, M. and Schubert, C., Silicon nitride composites materials with an improved high temperature oxidation resistance. *Ceram. Eng. Sci. Proc.*, 1997, 18, 615–623.
- Yamada, K. and Kamiya, N., High temperature mechanical properties of Si₃N₄–MoSi₂ and Si₃N₄–SiC composites with network structures of second phases. *Mater. Sci. Eng.*, 1999, A261, 270–277.
- Sciti, D., Guicciardi, S. and Bellosi, A., Microstructure and properties of Si₃N₄–MoSi₂ composites. *J. Ceram. Proc. Res.*, 2002, 3, 87–95.
- Gauckler, L. J., Hohnke, H. and Tien, T. Y., The system of Si₃N₄-SiO₂-Y₂O₃. J. Am. Ceram. Soc., 1980, 63, 35-37.
- Cinihulk, M. K. and Gareth, T., Fabrication and secondary-phase crystallization of rare-earth disilicate-silicon nitride ceramics. *J. Am. Ceram. Soc.*, 1992, 75, 2037–2043.
- Gogotsi, Y. G. and Backhaus-Ricoult, M., Identification of oxidation mechanism in silicon nitride ceramics by transmission electron microscopy studies of oxide scales. *J. Mater. Res.*, 1995, 10, 2306–2321.
- Strecker, K., Gonzaga, R., Ribeiro, S. and Hoffmann, M. J., Substitution of Y₂O₃ by a rare earth oxide mixture as sintering additive of Si₃N₄ ceramics. *Mater. Lett.*, 2000, 45, 39–42.
- Cinihulk, M. K. and Thomas, G., Oxidation of rare-earth disilicate-silicon nitride ceramics. J. Am. Ceram. Soc., 1992, 75, 2044–2049.
- Cinihulk, M. K. and Gareth, T., Strength and creep behaviour of rare-earth disilicate-silicon nitride ceramics. J. Am. Ceram. Soc., 1992, 75, 2050–2055.
- Guo, S., Hirosaki, N., Nishimura, T., Yamamoto, Y. and Mitomo, M., Hot pressed silicon nitride with Lu₂O₃ additives: oxidation and its effect on strength. J. Am. Ceram. Soc., 2003, 86, 1900–1905.
- Guo, S., Hirosaki, N., Yamamoto, Y., Nishimura, T. and Mitomo, M., Improvement of high-temperature strength of hot-pressed sintering silicon nitride with Lu₂O₃ addition. Scr. Mater., 2001, 45, 867–874.
- Guo, S., Hirosaki, N., Yamamoto, Y., Nishimura, T., Kitami, Y. and Mitomo, M., Microstructural characterization and high-temperature strength of hotpressed silicon nitride ceramics with Lu₂O₃ additives. *Phil. Mag. Lett.*, 2003, 83, 357–365.
- 24. EN 623-3. Advanced technical ceramics monolithic ceramics general and textural properties. Part 5. Determination of grain size and grain distribution (characterized by the Linear Intercept Method); 2001.
- 25. Van der Pauw, L. J., A method of measuring specific resistivity and Hall effect of arbitrary shape. *Philips Res. Repts.*, 1958, **13**, 1–9.
- ASTM F 43-93. Standard test methods for resistivity of semiconductor materials, *Annual Book of ASTM Standards*, 1993, 10.5, 33–38.
- Kao, M. Y., Properties of silicon-nitride molybdenum disilicide composites.
 J. Am. Ceram. Soc., 1993, 76, 2879–2883.
- 28. Barin, I. and Platzki, G., *Thermochemical data of pure substances (3rd ed.)*. VCH Verlagsgesellschaft, Weinheim, 1995, pp. 1079–1503.
- Heikinheimo, E., Kodentsov, A., Van Beek, J. A., Klomp, J. T. and Van Loo, F. J. J., Reactions in the systems Mo–Si₃N₄ and Ni–Si₃N₄. *Acta Metall. Mater.*, 1992, 40, S111–S119.
- Malliaris, A. and Turner, D. T., Influence of particle size on the electrical resistivity of compacted mixtures of polymeric and metallic powders. *J. Appl. Phys.*, 1971, 42, 614–618.
- McLachlan, D. S., Blaszkiewicz, M. and Newnham, R. E., Electrical resistivity of composites. J. Am. Ceram. Soc., 1990, 73, 2187–2203.
- 32. Askeland, D. R. and Phulè, P. P., *The science and engineering of materials* (4th ed.). Thomson Brooks/Col, Pacific Grove, CA, 2003, p. 800.

- 33. Köbel, S., Pluschke, J., Vogt, U. and Graule, T. J., MoSi₂–Al₂O₃ electro-conductive ceramic composites. *Ceram. Int.*, 2004, **30**, 2105–2110.
- 34. Hirosaki, N., Yamamoto, Y., Nishimura, T. and Mitomo, M., Phase relationships in Si₃N₄–SiO₂–Lu₂O₃ system. *J. Am. Ceram. Soc.*, 2002, **86**, 2861–2863.
- Jacobson, N., Corrosion of silicon-based ceramics in combustion environments. J. Am. Ceram. Soc., 1993, 76, 3–28.
- Hampshire, S., The role of additives in the pressureless sintering of nitrogen ceramics for engine applications. *Metals Forum*, 1984, 7, 162–170.