

Journal of the European Ceramic Society 27 (2007) 2865–2870

www.elsevier.com/locate/jeurceramsoc

Microwave dielectric properties of Re₃Ga₅O₁₂ (Re: Nd, Sm, Eu, Dy and Yb) ceramics and effect of TiO₂ on the microwave dielectric properties of Sm₃Ga₅O₁₂ ceramics

Jae Chul Kim^a, Min-Han Kim^a, Sahn Nahm^{a,*}, Jong-Hoo Paik^b, Jong-Hee Kim^b, Hwack-Joo Lee^c

^a Department of Materials Science and Engineering, Korea University, 1-5 Ka Anam-Dong, Sungbuk-Ku, Seoul 136-701, Republic of Korea
^b Korea Institute of Ceramic Engineering and Technology, 233-5 Gasan-Dong, Guemcheon-Gu, Seoul 153-801, Republic of Korea
^c New Materials Evaluation Center, Korea Research Institute of Standards and Science, Daedeok Science Town, Daejeon 305-600, Republic of Korea

Available online 28 December 2006

Abstract

Re₃Ga₅O₁₂ (Re: Nd, Sm, Eu, Dy and Yb) garnet ceramics sintered at 1350–1500 °C had a high quality factor ($Q \times f$) ranging from 40,000 to 192,173 GHz and a low dielectric constant (ε_r) of between 11.5 and 12.5. They also exhibited a relatively stable temperature coefficient of resonant frequency (τ_f) in the range of -33.7 to -12.4 ppm/°C. In order to tailor the τ_f value, TiO₂ was added to the Sm₃Ga₅O₁₂ ceramics, which exhibited good microwave dielectric properties. The relative density and grain size increased with addition of TiO₂, resulting in the enhancement of $Q \times f$ value. The τ_f increased with the addition of TiO₂. Excellent microwave dielectric properties of $\varepsilon_r = 12.4$, $Q \times f = 240,000$ GHz and $\tau_f = -16.1$ ppm/°C were obtained from the Sm₃Ga₅O₁₂ ceramics sintered at 1450 °C for 6 h with 1.0 mol% TiO₂. Therefore, Re₃Ga₅O₁₂ ceramics, especially TiO₂-added Sm₃Ga₅O₁₂ ceramics are good candidates for advanced substrate materials in microwave integrated circuits (MICs) applications. © 2006 Elsevier Ltd. All rights reserved.

Keywords: Sintering; Dielectric properties; Substrates; Garnet structure

1. Introduction

Recently, the development of advanced ceramic substrate materials which are applicable to microwave integrated circuits (MICs) has aroused interest, because of their potential use in the field of microwave telecommunication, in such areas as satellite communications, wireless local area networks and car collision avoidance systems. ^{1,2} These materials are fundamentally required to have a low dielectric constant (ε_r), in order to minimize the cross-coupling effect with conductors, as well as a high quality factor ($Q \times f$) to increase their frequency selectivity. To obtain the stability of the frequency against temperature changes, a zero temperature coefficient of resonant frequency (τ_f) is also desirable.

Intensive research has been conducted on this subject, and several candidate materials such as alumina (Al₂O₃),^{2,3} corundum type (Mg₄Nb₂O₉),⁴ forsterite (Mg₂SiO₄),^{5,6} and willemite

(Zn₂SiO₄)⁷ ceramics have been suggested. These ceramics have a low ε_r value of less than 12, and a high $Q \times f$ value of more than 200,000 GHz. However, they exhibit a large negative τ_f value. In the case of Al₂O₃, rutile (TiO₂) was added to address this problem, and the resulting 0.9Al₂O₃-0.1TiO₂ ceramics were reported to have good microwave dielectric properties of $\varepsilon_{\rm r} = 12.4$, $Q \times f = 117,000$ GHz and $\tau_f = 1.5$ ppm/°C.⁸ In the case of Mg₄Nb₂O₉ ceramics with 3.0 wt% LiF, CaTiO₃ was additionally added to the system. 9 However, although a zero τ_f value was obtained, the other properties were not desirable. TiO2 was also added to Mg₂SiO₄ ceramics in order to enhance the τ_f value and lower the sintering temperature. The microwave dielectric properties of the 24.0 wt% TiO₂-added Mg₂SiO₄ sintered at 1200 °C were $\varepsilon_r = 11$, $Q \times f = 82,000$ GHz and a near zero τ_f value. ¹⁰ With the same purpose, the Zn₂SiO₄-TiO₂ system was investigated, and the result was similar to that obtained for the alumina–titanate system.⁷

Previously, $Nd_3Ga_5O_{12}$ garnet phase was observed as a second phase in the $(1-x)NdGaO_3$ – $xCaTiO_3$ system. ¹¹ Although the reported microwave dielectric properties of this system were fairly good and warranted further investigation ^{11,12}, no system-

^{*} Corresponding author. Tel.: +82 2 3290 3279; fax: +82 2 928 3584. *E-mail address*: snahm@korea.ac.kr (S. Nahm).

atic research on the microwave dielectric properties of garnet materials has yet been performed. Therefore, in this work, rare earth gallium garnet ceramics (Re₃Ga₅O₁₂, Re: Nd, Sm, Eu, Dy and Yb) were synthesized and their dielectric properties in the microwave range were studied, in order to evaluate their potential for use as an advanced substrate materials for MIC.

2. Experimental procedure

High purity (>99%) oxide powders were used to synthesize Re₃Ga₅O₁₂ (Re: Nd, Sm, Eu, Dy and Yb) ceramics by conventional solid state processing. Nd₂O₃, Sm₂O₃, Eu₂O₃, Dy₂O₃ and Yb₂O₃ (High Purity Chemicals) raw powders were mixed with Ga₂O₃ (High Purity Chemicals, >99.9%) powders stoichiometrically in a nylon jar with zirconia ball for 24h, and then dried. After drying, calcination was performed at various temperatures for 3h. After 24-48h of remilling and subsequent drying, the pellets were pressed hydraulically into a disk-shape and then sintered at 1350–1500 °C for 6 h. To analyze the microstructure of the specimen, X-ray diffraction (XRD: Rigaku D/max-RC, Japan) and scanning electron microscopy (SEM: Hitachi S-4300, Japan) were employed. The relative density was determined by the water immersion method, and the microwave dielectric properties of the specimens were measured by a dielectric resonator technique described by Hakki-Coleman and Courtney. 13,14 The τ_f of the samples was measured in the temperature range from 25 to 90 °C.

3. Results and discussion

Fig. 1(a-c) shows the XRD patterns of the Re₃Ga₅O₁₂ (Re: Nd, Sm and Dy) powders calcined at various temperatures. For the Nd₃Ga₅O₁₂ specimen, the Nd₄Ga₂O₉ phase was formed when Nd₂O₃ and Ga₂O₃ were annealed at 800 °C. As the calcination temperature increased to 1000 °C, an NdGaO₃ perovskite phase was found and a homogeneous Nd₃Ga₅O₁₂ phase developed without any second phase when the specimens were annealed at 1150 °C. In the case of the Sm₃Ga₅O₁₂ specimens, the Sm₃Ga₅O₁₂ garnet phase was formed along with a small amount of the Sm₄Ga₂O₉ phase for the specimen calcined at 1000 °C. The homogeneous Sm₃Ga₅O₁₂ garnet phase developed without any second phase in the specimen calcined at 1150 °C. The perovskite SmGaO₃ phase was not found in this specimen. Similar results were also observed for the Eu₃Ga₅O₁₂ ceramics. On the other hand, for the Dy₃Ga₅O₁₂ specimens, Dy₂O₃ and Ga₂O₃ started to react at 800 °C forming the Dy₃Ga₅O₁₂ phase at 1000 °C. The low temperature phases, which were observed in the Nd₃Ga₅O₁₂ and Sm₃Ga₅O₁₂ specimens, were not observed in the Dy₃Ga₅O₁₂ specimen. Similar results were also observed in the Yb₃Ga₅O₁₂ specimen. The low temperature phases and their formation temperatures are summarized in Table 1. The above results show that for Nd₃Ga₅O₁₂ phase, in which the difference in size between Nd³⁺ and Ga³⁺ ions is large, Nd₄Ga₂O₉ and NdGaO3 phases were formed at low temperature, as shown in Fig. 1(a). For the $Dy_3Ga_5O_{12}$ (or $Yb_3Ga_5O_{12})$ phase, in which the difference in size between Dy³⁺ and Ga³⁺ ions is small compared with that of Nd³⁺ and Ga³⁺ ions, no low temperature phase

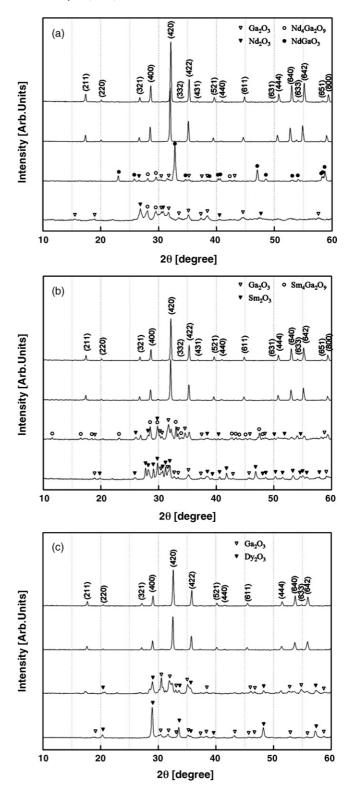


Fig. 1. XRD patterns of the (a) $Nd_3Ga_5O_{12}$, (b) $Sm_3Ga_5O_{12}$ and (c) $Dy_3Ga_5O_{12}$ powders calcined at various temperatures for 3 h.

was observed. Therefore, it is considered that the existence of the low temperature phase could be closely related to the difference in size between Re^{3+} and Ga^{3+} ions.

The relative density and ε_r of the Re₃Ga₅O₁₂ (Re: Nd, Sm, Eu, Dy and Yb) ceramics sintered at various temperatures for 6 h

Table 1 The low temperature phases of $Re_3Ga_5O_{12}$ (Re: Nd, Sm, Eu, Dy and Yb) ceramics and their formation temperatures

800 °C	1000 °C	≥1150°C
Nd ₄ Ga ₂ O ₉	NdGaO ₃ + Nd ₄ Ga ₂ O ₉	Nd ₃ Ga ₅ O ₁₂
$Sm_2O_3 + Ga_2O_3$	$Sm_3Ga_5O_{12} + Sm_4Ga_2O_9$	$Sm_3Ga_5O_{12}$
$Eu_2O_3 + Ga_2O_3$	$Eu_{3}Ga_{5}O_{12} + Eu_{4}Ga_{2}O_{9}$	$Eu_3Ga_5O_{12}$
$Dy_2O_3 + Ga_2O_3$	$Dy_3Ga_5O_{12}$	$Dy_3Ga_5O_{12}$
$Yb_2O_3 + Ga_2O_3$	$Yb_2O_3 + Ga_2O_3$	$Ga_2O_3 + Yb_3Ga_5O_{12}$
	$\begin{aligned} &Nd_4Ga_2O_9\\ &Sm_2O_3+Ga_2O_3\\ &Eu_2O_3+Ga_2O_3\\ &Dy_2O_3+Ga_2O_3\end{aligned}$	$\begin{array}{lll} Nd_4Ga_2O_9 & NdGaO_3 + Nd_4Ga_2O_9 \\ Sm_2O_3 + Ga_2O_3 & Sm_3Ga_5O_{12} + Sm_4Ga_2O_9 \\ Eu_2O_3 + Ga_2O_3 & Eu_3Ga_5O_{12} + Eu_4Ga_2O_9 \\ Dy_2O_3 + Ga_2O_3 & Dy_3Ga_5O_{12} \end{array}$

are shown in Fig. 2(a and b), respectively. The relative density of the Nd₃Ga₅O₁₂ ceramics sintered at 1350 °C was 95.2% of the theoretical density and reached a maximum value of 97.5% of the theoretical density when the specimen was sintered at 1400 °C. For the other specimens sintered at 1350 °C, the relative density was very low, but considerably increased and reached a saturated value of above 95% of the theoretical value for the specimens sintered at 1400 °C. Fig. 2(b) shows the variation of the ε_r value for the Re₃Ga₅O₁₂ (Re: Nd, Sm, Eu, Dy and Yb) ceramics sintered at various temperatures. For the Nd₃Ga₅O₁₂ ceramics sintered at 1350 °C, the $\varepsilon_{\rm r}$ value was approximately 12.25 and reached a maximum value of 12.4 for the specimen sintered at 1400 °C. The ε_r values of the other garnet ceramics were very low when they were sintered at 1350 °C and significantly increased and reached saturated values ranging from 11.5 to 12.5 when they were sintered at 1400 °C. Therefore, it is considered that the variation of the ε_r value with the sintering temperature was similar to that of the relative density.

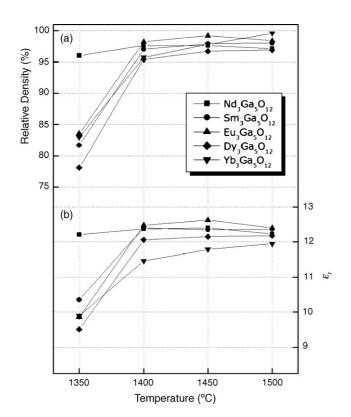


Fig. 2. Variations of: (a) relative density and (b) dielectric constant of the $Re_3Ga_5O_{12}$ (Re: Nd, Sm, Eu, Dy and Yb) ceramics sintered at various temperatures for 6 h.

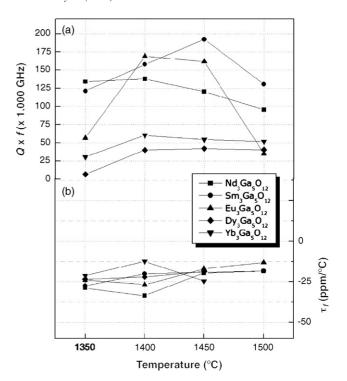


Fig. 3. Variations of: (a) the $Q \times f$ and (b) τ_f values of the Re₃Ga₅O₁₂ (Re: Nd, Sm, Eu, Dy and Yb) ceramics sintered at various temperatures for 6 h.

Fig. 3(a) shows the variation of the $Q \times f$ value of the Re₃Ga₅O₁₂ (Re: Nd, Sm, Eu, Dy and Yb) ceramics sintered at various temperatures. The $Q \times f$ value of the Nd₃Ga₅O₁₂ ceramics sintered at 1350 and 1400 °C was approximately 130,000 GHz, and it decreased when the sintering temperature exceeded 1400 °C. On the other hand, the $Q \times f$ value of the Sm₃Ga₅O₁₂ ceramics sintered at 1350 °C was about 120,000 GHz and increased with increasing sintering temperature. A maximum $Q \times f$ value of 192,173 GHz was obtained for the specimen sintered at 1450 °C. For the Eu₃Ga₅O₁₂ ceramics sintered at 1350 °C, the $Q \times f$ value was very low, but was significantly increased for the specimen sintered at 1400 °C. The Q-values of the Dy₃Ga₅O₁₂ and Yb₃Ga₅O₁₂ ceramics are also shown in Fig. 3(a), but they were very low compared with those of Nd₃Ga₅O₁₂, Sm₃Ga₅O₁₂ and Eu₃Ga₅O₁₂ garnet ceramics. The variation of the τ_f value of the Re₃Ga₅O₁₂ (Re: Nd, Sm, Eu, Dy and Yb) ceramics sintered at various temperatures is shown in Fig. 3(b). The τ_f values were situated between -35and −20 ppm/°C and, as such, their variation was not significant. Therefore, the Nd₃Ga₅O₁₂, Sm₃Ga₅O₁₂ and Eu₃Ga₅O₁₂ garnet ceramics have good microwave dielectric properties and, thus, they are promising candidates for advanced substrate materials. In particular, the Sm₃Ga₅O₁₂ ceramics sintered at 1450 °C exhibited excellent microwave dielectric properties of $Q \times f = 192,173 \text{ GHz}$, $\varepsilon_r = 12.4 \text{ and } \tau_f = -20 \text{ ppm/}^{\circ}\text{C}$. However, the τ_f value of the Sm₃Ga₅O₁₂ ceramics is relatively large and therefore needs to be reduced.

Since the τ_f value of TiO₂ is approximately 450 ppm/°C, TiO₂ was used to tailor the τ_f value of the Sm₃Ga₅O₁₂ ceramics. TiO₂ has often been used to increase the sinterability of ceramics and, therefore, the improvement of the microwave dielectric proper-

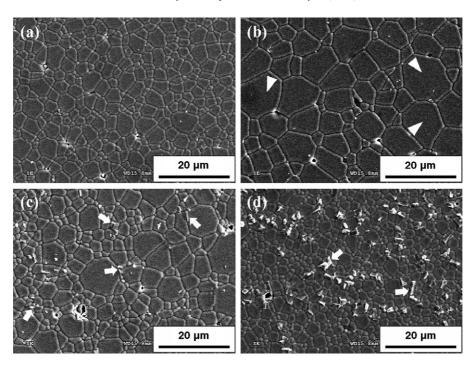
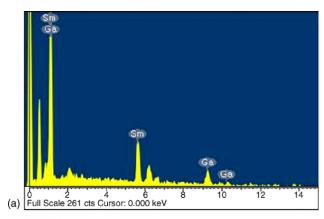



Fig. 4. SEM images of the Sm₃Ga₅O₁₂ ceramics containing x mol% of TiO₂ with: (a) x=0.0, (b) x=0.02 and (c) x=0.05 sintered at 1450 °C; and (d) x=0.02 sintered at 1500 °C for 6 h.

ties were also expected through the increase of the sinterability. Fig. 4(a–d) shows the SEM images of the $Sm_3Ga_5O_{12}$ ceramics containing x mol% of TiO_2 with $0.0 \le x \le 5.0$. The $Sm_3Ga_5O_{12}$ ceramics sintered at 1450 °C had a dense microstructure without

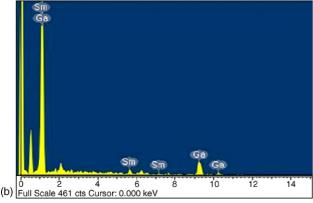


Fig. 5. EDS spectra taken from: (a) the matrix and (b) the liquid phase of the Sm₃Ga₅O₁₂ ceramics containing 2.0 mol% of TiO₂ sintered at 1500 °C for 6 h.

any pores. The average grain size of this specimen was approximately 5.0 µm. Grain growth occurred with the addition of TiO₂ and some of the grain indicated by the arrowhead grew abnormally to a size of 20 µm. A liquid phase was found in the specimen with 5.0 mol% of TiO₂, as indicated by the arrow in Fig. 4(c and d). Therefore, the increase of the grain size could be related to the presence of the liquid phase. Fig. 4(d) shows the SEM image of the Sm₃Ga₅O₁₂ ceramics containing 2.0 mol% of TiO₂ sintered at 1500 °C. A large amount of liquid phase was observed in this specimen. It is interesting to note that the grain size of this specimen was smaller than that of the specimen sintered at 1450 °C. According to a previous work, nucleation of the abnormal grain becomes more frequent at higher liquid contents and, thus, a number of the abnormal grains impinge upon each other during the early stages of growth, leading to the development of a microstructure with decreased grain size. 15,16 Therefore, the small grain size for the specimens sintered at 1500 °C could be attributed to the increased amount of liquid phase. EDS analysis was carried out to identify its composition. Fig. 5(a and b) show the EDS spectra taken from the matrix and the liquid phase shown in Fig. 4(d), respectively, and the results of compositional analysis are summarized in Table 2. In the matrix, Sm and Ga ions were detected but the amount of the Ga ion is less than that of nominal composition of Sm₃Ga₅O₁₂. On

Table 2 Chemical compositions of the matrix and the liquid phase of 2.0 mol% TiO2-added $Sm_3Ga_5O_{12}$ ceramics sintered at $1500\,^{\circ}\text{C}$ for 6 h

Element	Matrix		Liquid phase	
	wt%	at%	wt%	at%
Ga	35.85	54.65	84.18	91.98
Sm	64.15	45.35	15.82	8.02

Table 3 Microwave dielectric properties, resonant frequency, relative density and sintering temperatures of $Re_3Ga_5O_{12}$ (Re: Nd, Sm, Eu, Dy and Yb) and TiO_2 -added $Sm_3Ga_5O_{12}$ ceramics

Re ₃ Ga ₅ O ₁₂	Sintering temperature (°C)	Relative density (%)	ε_{r}	$Q \times f(GHz)$	$\tau_f (\text{ppm}/^{\circ}\text{C})$	Resonant frequency (GHz)
Yb ₃ Ga ₅ O ₁₂	1400	95.7	11.46	60,294	-12.4	14.9299
$Dy_3Ga_5O_{12}$	1450	96.7	12.15	42,110	-22	14.6103
Eu ₃ Ga ₅ O ₁₂	1400	98.2	12.48	169,155	-17	14.2256
$Sm_3Ga_5O_{12}$	1450	97.9	12.35	192,173	-19.2	13.9448
$Nd_3Ga_5O_{12}$	1400	97.6	12.37	137,811	-33.7	13.7557
TiO ₂ -added Sm ₃ Ga ₅ O ₁₂	1450	98.6	12.33	234,729	-16.1	14.1459

the other hand, a high concentration of Ga ions was detected in the liquid phase. Therefore, it is considered that some of the Ga ions decomposed from the matrix were used to form the Ga-rich liquid phase.

The variations of the relative density and ε_r , $Q \times f$ and τ_f of the Sm₃Ga₅O₁₂ + xTiO₂ ceramics with $0.0 \le x \le 5.0$ mol% sintered at various temperatures are shown in Fig. 6. The relative densities of all the specimens increased slightly with the addition of a small amount of TiO₂ and decreased when x exceeded 2.0 mol%. However, their variations were not significant and all the specimens had high relative density of more than 95% of the theoretical density. The ε_r value of the specimens increased slightly with the addition of TiO₂ to give a value ranging from 12 to 12.4, but this enhancement was negligible. The variation of the $Q \times f$ value is also shown in Fig. 6. For the specimens sintered above 1450 °C, the $Q \times f$ values decreased with the addition of TiO₂, and this might be due to the increase in the amount of the liquid phase. On the other hand, for the specimens sin-

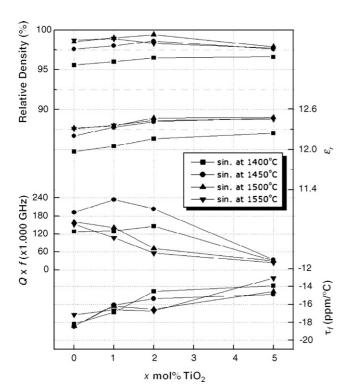


Fig. 6. Variations of the relative density and ε_r , $Q \times f$ and τ_f of the $\mathrm{Sm_3Ga_5O_{12}} + x\mathrm{TiO_2}$ ceramics with $0.0 \le x \le 5.0\,\mathrm{mol\%}$ sintered at various temperatures for 6 h.

tered at 1450 °C, the $Q \times f$ value considerably increased with the addition of TiO2 and showed a maximum value of 240,000 GHz when x = 1.0. The enhancement of the $Q \times f$ value could be due to the increase of the relative density and grain size. The $Q \times f$ value considerably decreased with the further addition of TiO₂ and this decrease might be explained by the increase in the amount of the liquid phase. The τ_f value of the Sm₃Ga₅O₁₂ ceramics increased with the addition of TiO2. The Sm₃Ga₅O₁₂ ceramics sintered at 1450 °C with 1.0–2.0 mol% of TiO₂, which exhibit a very high $Q \times f$ value, have τ_f values of -16 to -15 ppm/°C. In addition, microwave dielectric properties, resonant frequency, relative density and sintering temperatures of Re₃Ga₅O₁₂ (Re: Nd, Sm, Eu, Dy and Yb) and TiO₂-added Sm₃Ga₅O₁₂ ceramics are summarized in Table 3. Therefore, Re₃Ga₅O₁₂ ceramics, especially TiO2-added Sm3Ga5O12 ceramics are good candidates for advanced substrate materials in MIC applications. However, their sintering temperature needs to be decreased for co-firing with metal electrode such Ag and Cu to enable the miniaturization of the microwave devices.

4. Conclusions

The microwave dielectric properties of Re₃Ga₅O₁₂ (Re: Nd, Sm, Eu, Dy and Yb) garnet ceramics were investigated in order to evaluate their potential for use as advanced substrate materials in MICs. A homogeneous Re₃Ga₅O₁₂ phase was formed when the specimens were calcined at 1150 °C. All of the specimens had a high relative density (>95% of theoretical density) when they were sintered above 1400 °C. The Re₃Ga₅O₁₂ ceramics sintered at 1350-1500 °C exhibited microwave dielectric properties of $40,000 \le Q \times f \le 192,173 \text{ GHz}, 11.5 \le \varepsilon_r \le 12.5 \text{ and}$ $-33.7 \le \tau_f \le -12.4$ ppm/°C. Increases of the grain size and relative density were observed for the Sm₃Ga₅O₁₂ ceramics to which a small amount of TiO2 was added and which were sintered at 1450 °C. These improvements were explained by the presence of the liquid phase, which contains high concentration of Ga_2O_3 . The τ_f value was also improved by the addition of TiO₂. The Sm₃Ga₅O₁₂ ceramics sintered at 1450 °C for 6 h with 1.0 mol% TiO₂ exhibited improved microwave dielectric properties of $\varepsilon_r = 12.4$, $Q \times f = 240,000$ GHz and $\tau_f = -16.1$ ppm/°C.

Acknowledgements

This work was supported by the Ministry of Commerce, Industry and Energy and one of the authors also acknowledges the financial support provided by the Ministry of Science and Technology through the NRL Project.

References

- Roosen, A., Ceramic substrates: trends in materials and applications. *Ceram. Trans.*, 2000. 106, 479–492.
- Ohsato, H., Tsunooka, T., Kan, A., Ohishi, Y., Miyauchi, Y., Tohdo, Y. et al., Microwave-millimeterwave dielectric materials. Key Eng. Mater., 2004, 269, 195–198.
- Ohsato, H., Tsunooka, T., Ando, M., Ohishi, Y., Miyauchi, Y. and Kakimoto, K., Millimeter-wave dielectric ceramics of alumina and forsterite with high quality factor and low dielectric constant. *J. Korean Ceram. Soc.*, 2003, 40, 350–353.
- 4. Yoshida, A., Ogawa, H., Kan, A., Ishihara, S. and Higashida, Y., Influence of Zn and Ni substitutions for Mg on dielectric properties of $(Mg_{4-x}M_x)(Nb_{2-y}Sb_y)O_9$ (M=Zn and Ni) solid solutions. *J. Eur. Ceram. Soc.*, 2004, **24**, 1765–1768.
- 5. Tsunooka, T., Sugiyama, T., Ohsato, H., Kakimoto, K., Andou, M., Higashida, Y. *et al.*, Development of forsterite with high Q and zero temperature coefficient τ_f for millimeterwave dielectric ceramics. *Key Eng. Mater.*, 2004, **269**, 199–202.
- Sugiyama, T., Tsunooka, T., Kakimoto, K. and Ohsato, H., Microwave dielectric properties of forsterite-based solid solutions. *J. Eur. Ceram. Soc.*, 2006, 26, 2097–2100.
- Guo, Y., Ohsato, H. and Kakimoto, K., Characterization and dielectric behavior of willemite and TiO₂-doped willemite ceramics at millimeterwave frequency. *J. Eur. Ceram. Soc.*, 2006, 26, 1827–1830.

- Ohishi, Y., Miyauchi, Y., Ohsato, H. and Kakimoto, K., Controlled temperature coefficient of resonant frequency of Al₂O₃-TiO₂ ceramics by annealing treatment. *Jpn. J. Appl. Phys.*, 2004, 43, L749–L751.
- Yokoi, A., Ogawa, H., Kan, A., Ohsato, H. and Higashida, Y., Microwave dielectric properties of Mg₄Nb₂O₉-3.0 wt.% LiF ceramics prepared with CaTiO₃ additions. *J. Eur. Ceram. Soc.*, 2005, 25, 2871–2875.
- Tsunooka, T., Androu, M., Higashida, Y., Sugiura, H. and Ohsato, H., Effects of TiO₂ on sinterability and dielectric properties of high-Q forsterite ceramics. J. Eur. Ceram. Soc., 2004, 23, 2573–2578.
- 11. Kim, M. H., Nahm, S., Choi, C. H., Lee, H. J. and Park, H. M., Dielectric properties of (1–x)NdGaO₃–xCaTiO₃ solid solution at microwave frequencies. *Jpn. J. Appl. Phys.*, 2002, **41**, 717–721.
- Kim, J. C., Kim, M. H., Lim, J. B., Nahm, S., Paik, J. H. and Kim. J. H., Synthesis and Microwave Dielectric Properties of Re₃Ga₅O₁₂ (Re: Nd, Sm, Eu, Dy, Yb, and Y) Ceramics, *J. Am. Ceram. Soc.*, in press.
- Hakki, B. W. and Coleman, P. D., A dielectric resonator method of measuring inductive capacities in the millimeter range. *IEEE Trans. Microwave Theory Tech.*, 1960, 8, 402–410.
- Courtney, W. E. and Analysis, Evaluation of a method of measuring the complex permittivity and permeability of microwave insulators. *IEEE Trans. Microwave Theory Tech.*, 1970, 18, 476–485.
- Hong, S. H. and Kim, D. Y., Effect of liquid content on the abnormal grain growth of alumina. J. Am. Ceram. Soc., 2001, 84, 159–160.
- Ahn, J. H., Lee, J. H., Hong, S. H., Hwang, N. M. and Kim, D. Y., Effect of the liquid-forming additive content on the kinetics of abnormal grain growth in alumina. *J. Am. Ceram. Soc.*, 2003, 86, 1421–1423.