

E#≋₹S

Journal of the European Ceramic Society 27 (2007) 3075–3079

www.elsevier.com/locate/jeurceramsoc

Low temperature sintering and microwave dielectric properties of Ba₃Ti₅Nb₆O₂₈ with ZnO–B₂O₃ glass additions for LTCC applications

Jeong-Ryeol Kim^a, Dong-Wan Kim^b, In-Sun Cho^a, Byoung Soo Kim^a, Jae-sul An^a, Kug Sun Hong^{a,*}

^a School of Materials Science and Engineering, College of Engineering, Seoul National University, Seoul, 151-744, Republic of Korea
^b Materials Science & Engineering Division, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
Available online 25 January 2007

Abstract

The effects of ZnB_2O_4 glass additions on the sintering temperature and microwave dielectric properties of $Ba_3Ti_5Nb_6O_{28}$ have been investigated using dilatometer, X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and a network analyzer. The pure $Ba_3Ti_5Nb_6O_{28}$ system showed a high sintering temperature (1250 °C) and had the good microwave dielectric properties: $Q \times f$ of 10,600 GHz, ε_r of 37.0, τ_f of -12 ppm/°C. It was found that the addition of ZnB_2O_4 glass to $Ba_3Ti_5Nb_6O_{28}$ lowered the sintering temperature from 1250 to 925 °C. The reduced sintering temperature was attributed to the formation of ZnB_2O_4 liquid phase and B_2O_3 -rich liquid phases. Also the addition of ZnB_2O_4 glass enhanced the microwave dielectric properties: $Q \times f$ of 19,100 GHz, ε_r of 36.6, τ_f of 5 ppm/°C. From XPS and XRD studies, these phenomena were explained in terms of the reduction of oxygen vacancies and the formation of secondary phases having the good microwave dielectric properties. © 2007 Published by Elsevier Ltd.

Keyword: Low temperature sintering

1. Introduction

The development of low temperature co-fired ceramics (LTCC) for microwave applications has received much attention, because of the design and functional benefits upon the miniaturization of multilayer devices with high electrical performance by using highly conductive internal electrode metals, such as silver, with a melting point of 961 °C.

In general, in order to sinter ceramics at low temperature, low-melting glasses are added to the ceramics commercially. Among these glasses, Zn–B–O glass has been investigated widely and reported as a low temperature sintering aid. Takada et al. reported sintering behaviors and microwave properties of BaO–TiO₂–WO₃ ceramics with commercial ZnO–B₂O₃ glass. Their results showed that for 30 wt% glass addition, the density of BaO–4TiO₂–WO₃ ceramics reached 98% of the theoretical density at sintering temperature of 900 °C, but the microwave dielectric properties of these low-fired ceramics were significantly deteriorated. Also, Kim et al. investigated

the effects of ZnO-B2O3 glass on the low temperature sintering and the microwave dielectric properties in BaTi₄O₉ ceramics. ZnO-B₂O₃ glass heat-treated at 900 °C for 2 h crystallized to ZnB₂O₄ and Zn₃B₂O₆ phases, and had no reaction with BaTi₄O₉ ceramics. The microwave dielectric properties of low temperature fired BaTi₄O₉ were dependent on the amount of these ZnO-B₂O₃ crystalline phases (ZnB₂O₄ and Zn₃B₂O₆). Lee et al.³ investigated the effects of 3ZnO–B₂O₃ glass on the microwave dielectric properties and microstructure of Ba₂Ti₉O₂₀-based ceramics. The small addition of the 3ZnO-B₂O₃ glass phase (1 wt%) to the ceramics could effectively lower the sintering temperature (940 °C) and increased the bulk density and dielectric constant of the sintered ceramics. The more addition of the 3ZnO-B₂O₃ glass enhanced the formation of BaZr(BO₃)₂ and Zn₂SiO₄ phases in the ceramics and the second phases significantly affected the microwave dielectric properties and microstructure of the ceramics. However, for Ca₅Nb₂TiO₁₂ ceramics, ZnO-B₂O₃ glass could not lower the sintering temperature of the ceramics and deteriorated its quality factor and dielectric constant due to the formation of secondary phases $(\beta-Zn_5B_4O_{11})$.

The dielectric properties of Ba₃Ti₅Nb₆O₂₈ ceramics have been investigated by Roberts et al.⁵ More recently,

^{*} Corresponding author. Tel.: +82 2 880 8316; fax: +82 2 886 4156. E-mail address: kshongss@plaza.snu.ac.kr (K.S. Hong).

Sebastian has investigated the microwave dielectric properties of BaO–TiO₂–Nb₂O₅/Ta₂O₅ system.⁶ He has reported that Ba₃Ti₅Nb₆O₂₈ ceramic has high $Q \times f$ of 4500 GHz (at 5.4 GHz), high $\varepsilon_{\rm r}$ of 41 and small $\tau_{\rm f}$ of 8 ppm/°C. The sintering temperature of Ba₃Ti₅Nb₆O₂₈ was above 1250 °C, which is too high to be applicable to LTCC. Unfortunately, the effects of sintering aids on the firing temperature of Ba₃Ti₅Nb₆O₂₈ ceramics of have not been thoroughly studied.

In the present work, ZnB_2O_4 glass was chosen as a sintering aid to lower the sintering temperature of $Ba_3Ti_5Nb_6O_{28}$ ceramics. The microwave dielectric properties of $Ba_3Ti_5Nb_6O_{28}$ with ZnB_2O_4 glass additions were investigated with the density, the presence of second phases. Also, the enhancement in the quality factor of the low fired $Ba_3Ti_5Nb_6O_{28}$ ceramics was discussed with the absence of oxygen vacancies in the low fired samples.

2. Experimental procedure

The glass was prepared by mixing molar ratio of 1:1 of ZnO (99.9% pure, Cerac, Milwaukee, WI) and B_2O_3 (99.9% pure, High Purity Chemical Laboratory, Saitama, Japan) in a batch size to yield 60 g of glass. The mixed powder was melted at $1000\,^{\circ}$ C by using an uncovered Pt crucible. The melt was homogenized for 1 h and quenched on steel plates. The glass was milled below $-1\,\mu m$ using a planetary ball mill (Model PM400, Retsch, Germany).

The $Ba_3Ti_5Nb_6O_{28}$ powders were synthesized by conventional mixed oxide methods: $BaCO_3$ (99.9% pure, Cerac, Milwaukee, WI), TiO_2 and Nb_2O_5 (99.9% pure, High Purity Chemical Laboratory, Saitama, Japan) were mixed homogeneously and calcined at $1150\,^{\circ}C$ for 2 h. The calcined powders containing a proper amount of ZnB_2O_4 glass were ball-milled for 48 h using ethanol solvent. The milled powders were then dried, granulated, and pressed at $1000\, kg/cm^2$ to yield several disk-type pellets (8 mm in diameter and 4 mm in thickness). The pellets were sintered at $850–950\,^{\circ}C$ for 2 h with a heating rate of $5\,^{\circ}C/min$.

Shrinkage of the specimens during heat treatment was measured using a horizontal loading dilatometer with alumina rams and boats (Model DIL402C, Netzsch Instruments, Germany). The bulk density of the sintered samples was determined by the Archimedes method. Polished and thermally etched surfaces of sintered specimens were examined using field emission scanning electron microscopy (FESEM: Model JSM6330F, Japan Electronic Optics Laboratory, Japan). The formation of second phases was investigated using X-ray powder diffraction (Model M18XHF, Macscience Instruments, Japan).

The microwave dielectric properties of sintered samples were measured at x-band frequencies (8–12 GHz) using a network analyzer (Model HP8720C, Hewlett-Packard, Palo Alto, CA). X-ray photoelectron spectroscopy (XPS) analysis was performed with a VG ESCALAB spectrometer (Model 220i-XL, VG Scientific Instruments, UK). Peak positions were calibrated by taking the C 1s peak (284.6 eV) as a reference.

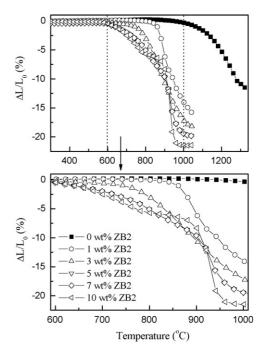


Fig. 1. Shrinkage curves of $Ba_3Ti_5Nb_6O_{28}$ samples with various contents of ZnB_2O_4 glass as a function of temperature.

3. Results and discussion

3.1. Sintering behavior and phase evolution of low-fired Ba₃Ti₅Nb₆O₂₈

Fig. 1 shows the change in shrinkage of Ba₃Ti₅Nb₆O₂₈ samples with various amount of ZnB2O4 glass as a function of temperature. The shrinkage of Ba₃Ti₅Nb₆O₂₈ sample without the ZnB₂O₄ glass appeared to occur slowly at approximate 1000 °C and reaches a maximum value at over 1300 °C. For Ba₃Ti₅Nb₆O₂₈ sample with 3 wt% ZnB₂O₄ glass, the shrinkage occurred at 800 °C, moreover, that of Ba₃Ti₅Nb₆O₂₈ samples with more amounts of ZnB₂O₄ glass additions occurred approximately at 600 °C. ZnB₂O₄ glass has a low softening temperature $(T_s) = 587$ °C and begins to melt above T_s . At over 600 °C, ZnB₂O₄ glass can begin to melt and the formed liquid phase can enhance the densification of Ba₃Ti₅Nb₆O₂₈ samples. For Ba₃Ti₅Nb₆O₂₈ sample with 10 wt% of ZnB₂O₄ glass addition, though the first shrinkage began at 600 °C, the shrinkage rate become low near 800 °C and the ultimate shrinkage started at 900 °C again. This gentle shrinkage near 800 °C could be affected by the crystallization of ZnB₂O₄ glass. The ZnB₂O₄ glass with less than 1 µm in size added to Ba₃Ti₅Nb₆O₂₈ samples started to crystallize at over 750 °C (not shown in this study). These results can support that the low temperature densification originates from the formation of ZnB₂O₄ liquid phase and that ZnB₂O₄ glass affects the shrinkage behaviors of Ba₃Ti₅Nb₆O₂₈ samples.

Fig. 2 shows the change in bulk density of $Ba_3Ti_5Nb_6O_{28}$ samples with various contents of ZnB_2O_4 glass additions as a function of sintering temperature. The bulk density of $Ba_3Ti_5Nb_6O_{28}$ samples with ZnB_2O_4 glass additions increases sharply with increasing temperature and has a constant value

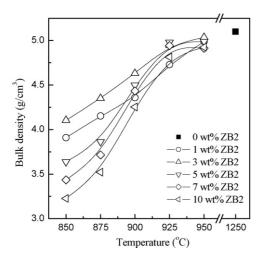


Fig. 2. Changes in the bulk densities of $Ba_3Ti_5Nb_6O_{28}$ samples with various contents of ZnB_2O_4 glass as a function of sintering temperature.

above 925 °C. The bulk density of $Ba_3Ti_5Nb_6O_{28}$ sample with 3 wt% ZnB_2O_4 glass addition sintered at 925 °C for 2 h reached almost 4.95 g/cm³. The obtained bulk density of 4.95 g/cm³ corresponds to the intermediate value between the bulk density $(5.10 \, \text{g/cm}^3)$ of $Ba_3Ti_5Nb_6O_{28}$ sample sintered at $1250\,^{\circ}\text{C}$ for 2 h and the theoretical density $(3.61 \, \text{g/cm}^3)$ of ZnB_2O_4 crystalline phase (JCPDS #39-1126). Unfortunately, the theoretical density of $Ba_3Ti_5Nb_6O_{28}$ ceramic has not been reported, though the structure of that has been reported (JCPDS #37-1477).8 Based on these densities, the theoretical density can be calculated approximately at $5.04 \, \text{g/cm}^3$ for $Ba_3Ti_5Nb_6O_{28}$ sample with 3 wt% ZnB_2O_4 glass addition. The obtained bulk density of $4.95 \, \text{g/cm}^3$ corresponds to 98.2% of the calculated theoreti-

cal density for $Ba_3Ti_5Nb_6O_{28}$ sample with 3 wt% ZnB_2O_4 glass addition. These results can demonstrate that significant reduction in the sintering temperature of $Ba_3Ti_5Nb_6O_{28}$ samples was possible with ZnB_2O_4 glass additions.

The densification of the low-fired Ba₃Ti₅Nb₆O₂₈ ceramics was confirmed by a SEM study. Fig. 3 shows SEM micrographs of (a) Ba₃Ti₅Nb₆O₂₈ sample without ZnB₂O₄ glass sintered at 1250 °C for 2 h, and Ba₃Ti₅Nb₆O₂₈ samples with (b) 1 wt%, (c) 3 wt%, and (d) 10 wt% ZnB₂O₄ glass additions sintered at 925 °C for 2 h. Ba₃Ti₅Nb₆O₂₈ sample containing 1 wt% ZnB₂O₄ glass had some pores and the average size of the grains $(0.4 \,\mu\text{m})$ was less than that $(1.3 \,\mu\text{m})$ of $Ba_3Ti_5Nb_6O_{28}$ sample sintered at 1250 °C. Ba₃Ti₅Nb₆O₂₈ sample containing 3 wt% ZnB₂O₄ glass had a dense microstructure and the average size of the grains was about 0.8 µm. The higher the amount of glass added was, the larger the average size of the grains was. Moreover, the excess addition of ZnB₂O₄ glass induced an abnormal grain growth and some large pores. The size of the grains grown abnormally was larger than 5 µm for Ba₃Ti₅Nb₆O₂₈ sample containing 10 wt% ZnB₂O₄ glass. The abnormal grain growth can interfere with densification of ceramics. 9 The results indicate that Ba₃Ti₅Nb₆O₂₈ sample containing ZnB₂O₄ glass could involve with liquid-phase sintering and that the proper amounts of glass are needed in order to obtain dense microstructure.

Fig. 4 shows XRD patterns of (a) Ba₃Ti₅Nb₆O₂₈ sample sintered at 1250 °C for 2 h and Ba₃Ti₅Nb₆O₂₈ samples sintered at 925 °C for 2 h with various contents of ZnB₂O₄ glass additions ((b)–(f)). And Fig. 4(g) shows XRD pattern of the ZnB₂O₄ glass powder quenched at 925 °C. Fig. 4 indicates that the second phases containing crystalline phases of ZnB₂O₄ and BaB₈O₁₃ (JCPDS #20-0097) appeared. The intensity of the second phase peaks slightly increases with increasing amounts of

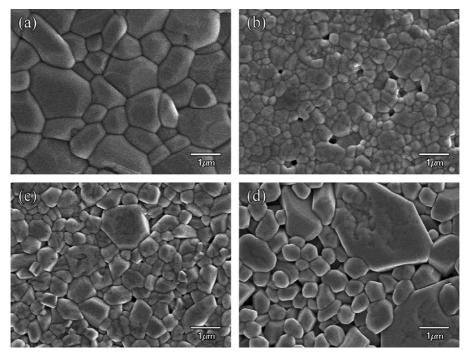


Fig. 3. SEM micrograph of $Ba_3Ti_5Nb_6O_{28}$ samples with (a) 0 wt% ZnB_2O_4 glass sintered at 1250 °C for 2 h, (b) 1 wt%, (c) 3 wt%, and (d) 10 wt% ZnB_2O_4 glass sintered at 925 °C for 2 h.

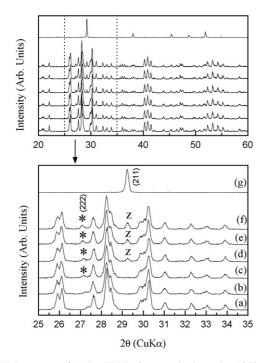


Fig. 4. XRD patterns of (a) $Ba_3Ti_5Nb_6O_{28}$ sample sintered at $1250\,^{\circ}\text{C}$ for 2 h and $Ba_3Ti_5Nb_6O_{28}$ samples sintered at $925\,^{\circ}\text{C}$ for 2 h with various contents of ZnB_2O_4 glass: (b) 1 wt%, (c) 3 wt%, (d) 5 wt%, (e) 7 wt%, (f) 10 wt%. And XRD pattern of (g) crystalline ZnB_2O_4 quenched at $925\,^{\circ}\text{C}$ (Z: crystalline ZnB_2O_4 , *: BaB_8O_{13}).

ZnB $_2$ O $_4$ glass additions. The BaB $_8$ O $_{13}$ phase could enhance the densification of Ba $_3$ Ti $_5$ Nb $_6$ O $_{28}$ samples such as ZnB $_2$ O $_4$ glass could. In the phase diagram of BaO $_2$ O $_3$, BaB $_8$ O $_{13}$ $_2$ BaB $_4$ O $_7$, BaB $_4$ O $_7$ $_2$ BaB $_2$ O $_4$, and BaB $_2$ O $_4$ $_2$ BaB $_3$ DO $_6$ eutectics exist as low as 859, 889, 905 °C. The formation of ZnB $_2$ O $_4$ and a B $_2$ O $_3$ -rich liquid phase containing BaB $_8$ O $_{13}$ can assist in the densification of Ba $_3$ Ti $_5$ Nb $_6$ O $_{28}$ ceramics.

3.2. Microwave dielectric properties of low-fired $Ba_3Ti_5Nb_6O_{28}$

In this study, the Ba₃Ti₅Nb₆O₂₈ sample sintered at 1250 °C for 2 h had the relative dielectric constant ($\varepsilon_{\rm r}$) of 37.0, a quality factor ($Q \times f$) of 10,900 GHz, and a temperature coefficient of resonant frequency ($\tau_{\rm f}$) of -12 ppm/°C, similar to the previous studies.^{5–6}

Fig. 5(a) shows ε_r of the $Ba_3Ti_5Nb_6O_{28}$ samples sintered at $925\,^{\circ}C$ for 2 h as a function of ZnB_2O_4 glass contents. For low-fired $Ba_3Ti_5Nb_6O_{28}$ samples with ZnB_2O_4 glass, ε_r has been affected by the density and the second phases. For $Ba_3Ti_5Nb_6O_{28}$ sample with 1 wt% ZnB_2O_4 glass, ε_r is 34.1, which is attributed to a low bulk density as shown in Fig. 2. However, ε_r of the dense $Ba_3Ti_5Nb_6O_{28}$ with 3 wt% ZnB_2O_4 glass is 36.6, similar to that of pure $Ba_3Ti_5Nb_6O_{28}$ sample. More additions of ZnB_2O_4 glass cause a slight decrease of ε_r , which can be interpreted with the dielectric constants of the secondary phases such as ZnB_2O_4 and BaB_8O_{13} , which were detected in the XRD analysis. Wu et al. 11 made a systematic study of dielectric properties of the glass systems including ZnB_2O_4 at microwave frequencies. According to their studies, $ZnO-B_2O_3$

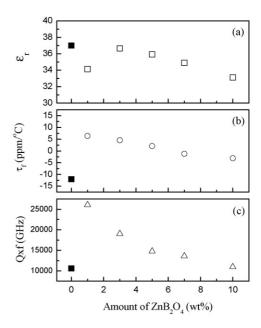


Fig. 5. Microwave dielectric properties of the Ba₃Ti₅Nb₆O₂₈ samples sintered at 925 °C for 2 h as a function of ZnB₂O₄ glass: (a) relative dielectric constant ($\varepsilon_{\rm f}$), temperature coefficient of resonant frequency ($\tau_{\rm f}$), (c) quality factor ($Q \times f$).

glass with molar ratio of 1:1 showed a low ε_r of 6.88. Although the dielectric properties of crystalline BaB₈O₁₃ is not fully characterized, BaO–B₂O₃–SiO₂ glass with a molar ratio of 3:6:1 exhibited a low ε_r of 7.31. Therefore, the slight reduction of ε_r observed in the low-temperature sintered Ba₃Ti₅Nb₆O₂₈ with 3–7 wt% ZnB₂O₄ glass additions can be attributed to the low ε_r of secondary phases though the densities of those samples were similar. Because Ba₃Ti₅Nb₆O₂₈ sample with 10 wt% ZnB₂O₄ glass had a low density and more secondary phases, ε_r is the lowest value, 33.1.

The change in τ_f of the low-fired Ba₃Ti₅Nb₆O₂₈ samples as a function of ZnB₂O₄ glass content is shown in Fig. 5(b). The higher contents of ZnB₂O₄ glass added is, the lower τ_f of the low-fired Ba₃Ti₅Nb₆O₂₈ samples is. Secondary phases having a low τ_f such as ZnB₂O₄ ($-10\,\text{ppm}/^\circ\text{C}$)¹¹ would contribute to the slight decrease in τ_f of ZnB₂O₄ glass-added Ba₃Ti₅Nb₆O₂₈ system. Unfortunately, the reason why τ_f of low-fired Ba₃Ti₅Nb₆O₂₈ samples including secondary phases with a low τ_f was high in comparison with $-12\,\text{ppm}/^\circ\text{C}$ for pure Ba₃Ti₅Nb₆O₂₈ sample is not clear.

Fig. 5(c) shows the change in the quality factor of low-fired $Ba_3Ti_5Nb_6O_{28}$ samples as a function of ZnB_2O_4 glass content. The further addition of ZnB_2O_4 glass diminished the quality factor, significantly. Considering that the bulk densities of specimens with 3–7 wt% ZnB_2O_4 glass addition were almost same, the secondary phases (i.e. ZnB_2O_4 , 1733 GHz) 11 could mainly deteriorate the quality factor. The similar behavior was reported by Takada et al. 1 They reported that sintering studies and microwave property measurements were performed on $BaO-TiO_2-WO_3$ ceramics with additions of $5ZnO-2B_2O_3$ glass. Their results showed that the theoretical densities of $BaO-4TiO_2-0.1WO_3$ ceramics were similar at sintering temperature of $900\,^{\circ}C$, but the quality factor of those specimens was significantly affected by secondary phases.

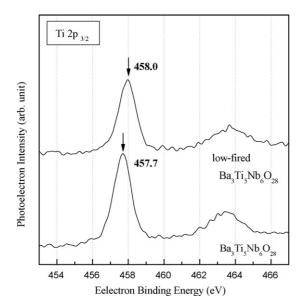


Fig. 6. XPS spectra of Ti $2p_{2/3}$ for $Ba_3Ti_5Nb_6O_{28}$ sample sintered at $1250\,^{\circ}C$ for $2\,h$ and low-fired $Ba_3Ti_5Nb_6O_{28}$ sample with $3\,wt\%$ ZnB_2O_4 glass sintered at $925\,^{\circ}C$.

It is noteworthy that low-fired Ba₃Ti₅Nb₆O₂₈ samples with ZnB_2O_4 glass additions possess a high $Q \times f$, in comparison with that of pure Ba₃Ti₅Nb₆O₂₈ sample. In general, the addition of additives for low temperature sintering is accompanied by a significant decrease in the microwave dielectric properties. Fig. 6 shows Ti 2p_{3/2} spectra of Ba₃Ti₅Nb₆O₂₈ sample sintered at 1250 °C and Ba₃Ti₅Nb₆O₂₈ sample with 3 wt% ZnB₂O₄ glass sintered at 925 °C. The binding energy of Ti 2p_{3/2} peak for Ba₃Ti₅Nb₆O₂₈ sample sintered at 1250 °C and Ba₃Ti₅Nb₆O₂₈ sample with 3 wt% ZnB₂O₄ glass sintered at 925 °C is 457.7 and 458.0 eV, respectively. It is reported that the binding energy of Ti 2p_{3/2} peak for Ti₂O₃ (Ti³⁺) and TiO₂ (Ti⁴⁺) is 457.3 and 458.8 eV, respectively. 12 These results suggest that Ba₃Ti₅Nb₆O₂₈ sample sintered at 1250 °C could have the more oxygen vacancies due to reduction of Ti⁴⁺ than low-fired Ba₃Ti₅Nb₆O₂₈ samples. It has been reported that, although there is only a very limited reduction of the TiO₂, the reduction is sufficient to deteriorate the quality factor in TiO_2 containing ceramics. ^{13–15} Therefore, the higher $Q \times f$ of Ba₃Ti₅Nb₆O₂₈ samples sintered at low temperature than that of pure Ba₃Ti₅Nb₆O₂₈ sample can be attributed to the absence of oxygen vacancies, i.e., Ti⁴⁺ reductions.

4. Conclusion

The sintering behaviors, phase evolution and microwave dielectric properties of $Ba_3Ti_5Nb_6O_{28}$ ceramics were investigated as a function of ZnB_2O_4 glass content. It was found that the proper additions of ZnB_2O_4 glass to $Ba_3Ti_5Nb_6O_{28}$ ceramics enabled a reduction in sintering temperature from 1250 to 925 °C. During sintering of $Ba_3Ti_5Nb_6O_{28}$ ceramics with ZnB_2O_4 glass, $Ba_3Ti_5Nb_6O_{28}$ was found to react with ZnB_2O_4 glass, primarily forming BaB_8O_{13} crystalline phase. The low temperature sintering was suggested to originate from the formation of B_2O_3 -rich liquid phases including BaB_8O_{13} as well

as ZnB₂O₄ liquid phase. The microwave dielectric properties of low-fired Ba₃Ti₅Nb₆O₂₈ samples with ZnB₂O₄ glass additions mainly depended on the densification and the second phases such as crystalline ZnB₂O₄ and BaB₈O₁₃. The enhancement of the quality factor in low-fired Ba₃Ti₅Nb₆O₂₈ samples would be due to less oxygen vacancies than in Ba₃Ti₅Nb₆O₂₈ samples sintered at 1250 °C. Ba₃Ti₅Nb₆O₂₈ ceramic with 3 wt% ZnB₂O₄ glass additions sintered at 925 °C had good microwave dielectric properties: $Q \times f = 19,100$ GHz, $\varepsilon_r = 36.6$, $\tau_f = 5$ ppm/°C. Therefore, Ba₃Ti₅Nb₆O₂₈ ceramic with 3 wt% ZnB₂O₄ glass can be a suitable candidate for low temperature co-fired ceramic (LTCC), in the points of its low sintering temperature and outstanding microwave dielectric properties.

Acknowledgements

This research was supported by a grant from the Center for Advanced Materials Processing (CAMP) of the 21st Century Frontier R&D Program funded by the Ministry of Commerce Industry and Energy (MOCIE), Republic of Korea.

References

- Takada, T., Wang, S. F., Yoshikawa, S., Jang, S. J. and Newnham, R. E., Effect of glass additions on BaO–TiO₂–WO₃ microwave ceramics. *J. Am. Ceram. Soc.*, 1994, 77(7), 1909–1916.
- Kim, D. W., Lee, D. G. and Hong, K. S., Low-temperature firing and microwave dielectric properties of BaTi₄O₉ with Zn–B–O glass system. *Mater. Res. Bull.*, 2001, 36, 585–595.
- Lee, Y.-C., Leeb, W.-H. and Shieuc, F.-S., Microwave dielectric properties and microstructures of Ba₂Ti₉O₂₀-based ceramics with 3ZnO–B₂O₃ addition. *J. Eur. Ceram. Soc.*, 2005, 25, 3459–3468.
- Bijumon, P. V. and Sebastian, M. T., Influence of glass additives on the microwave dielectric properties of Ca₅Nb₂TiO₁₂ ceramics. *Mater. Sci. Eng.* B, 2005, 123, 31–40.
- Roberts, G. L., Cava, R. J., Peck, W. F. and Krajewski, J. J., Dielectric properties of barium titanium niobates. *J. Mater. Res.*, 1997, 12(2), 526–530.
- Sebastian, M. T., New loss microwave dielectric ceramics in the BaO-TiO₂-Nb₂O₅/Ta₂O₅ system. J. Mater. Sci.: Mater. El., 1999, 10, 475-478.
- Kim, J. R., Kim, D. W., Jung, H. S. and Hong, K. S., Low-temperature sintering and microwave dielectric properties of Ba₅Nb₄O₁₅ with ZnB₂O₄ glass. *J. Eur. Ceram. Soc.*, 2006, 26, 2105–2109.
- Millet, J. M., Roth, R. S., Ettlinger, L. D. and Parker, H. S., Phase equilibria and crystal chemistry in the ternary system BaO–TiO₂–Nb₂O₅ I. J. Solid State Chem., 1987, 67, 259–270.
- Valant, M. and Suvorov, D., Microstructural phenomena in low-firing ceramics. *Mater. Chem. Phys.*, 2003, 79, 104–110.
- Levin, E. M. and McMurdie, H. F., The system BaO–B₂O₃. J. Res. Natl. Bir. Stand, 1949, 42, 131–138.
- Wu, J. M. and Huang, H. L., Microwave properties of zinc, barium and lead borosilicate glasses. J. Non-Cryst. Solids., 1999, 260, 116–124.
- 12. Moulder, J. F., *Handbook of X-ray Photoelectron Spectroscopy*. Physical Electronics, Minnesota, 1995, p. 73.
- Nomura, S., Tomaya, K. and Kaneta, K., Effect of Mn doping on the dielectric properties of Ba₂Ti₉O₂₀ ceramics at microwave frequencies. *Jpn. J. App. Phys.*, 1983, 22(7), 1125–1128.
- Negas, T., Yeager, G., Bell, S., Coats, N. and Minis, I., BaTi₄O₉/Ba₂Ti₉O₂₀-based ceramics resurrected for modern microwave applications. *Am. Ceram. Soc. Bull.*, 1993, 72(1), 80–89.
- Templeton, A., Wang, X., Penn, S. J., Webb, S. J., Cohen, L. F. and Alford, N. M., Microwave dielectric loss of titanium oxide. *J. Am. Ceram. Soc.*, 2000, 83(1), 95–100.