

E#≋₹S

Journal of the European Ceramic Society 30 (2010) 307-313

www.elsevier.com/locate/jeurceramsoc

Phase formation and dielectric properties of $Ln_2(Ln'_{0.5}Nb_{0.5})_2O_7$ (Ln = rare earth element)

Lu Cai*, Juan C. Nino

Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, United States

Available online 24 June 2009

Abstract

Weberites and pyrochlores $(A_2B_2O_7)$, both fluorite-related superstructures, are attractive dielectric ceramics due to their ability to accommodate diverse cations, thus allowing their properties to be tailored. This study focuses on the fundamental understanding of the structure–dielectric property relationships in fluorite-related oxides. Specifically, $L_{13}NbO_7$ and $L_{12}(L_{10.5}Nb_{0.5})_2O_7$ (where the ionic radius of L_{11} is smaller than that of L_{11} compounds are investigated. It has been previously shown that weberite-type $L_{13}NbO_7$ exhibits a composition dependent dielectric relaxation above room temperature. It is here shown that a dielectric relaxation also occurs in $L_{13}(L_{10.5}Nb_{0.5})_2O_7$ ($L_{11}=Yb^{3+}$, $L_{11}=Yb^{3+}$), and $L_{12}=Yb^{3+}$ compounds near or below -158 °C. The temperature, at which the maximum permittivity occurs, is different for different compositions (-132 °C for $L_{12}=Vb_{10.5}Nb_{0.5}$), $L_{12}=Vb_{10.5}Nb_{0.5}$, $L_{13}=Vb_{10.5}Nb_{0.5}$, $L_{13}=Vb_{10.5}Nb_{0.5}$, and $L_{13}=Vb_{10.5}Nb$

Keywords: Dielectric properties; Relaxation

1. Introduction

The weberite and the pyrochlore $(A_2B_2O_7)$ are both aniondeficiency fluorite (AO_2 or A_4O_8) superstructures. These two structures have a similar cationic sublattice, which is comprised by the stacking of cubic close-packed cation layers, the same as {1 1 1} planes in the fluorite. These layers alternate between the compositions A_3B and AB_3 and are parallel to $\{1\ 1\ 1\}$ planes in the pyrochlore and {0 1 1} planes in the weberite. The crystallographic relationship between the orthorhombic weberite and the cubic pyrochlore is further clarified by the fact that the space group of weberite (Imma) is a subgroup of Fd-3m, the space group of pyrochlore. These two structures can be described as a network of corner-shared BO₆ octahedra. However, a significant difference between the two is that all of the oxygen ions in weberites participate in the formation of BO₆ octahedra, but only 6 out of 7 oxygen ions participate in pyrochlore structures (see Fig. 1).¹

The field existence and stability of pyrochlores can typically be predicted based on the ratio of cation ionic radii R_A/R_B . For $A_2^{3+}B_2^{4+}O_7$ pyrochlores, the field existence and

stability is in the range of $1.46 < R_A/R_B < 1.80$, where R is the ionic radius of the cation. 2 Ln₂(Ln_{0.5}Nb_{0.5})₂O₇ (Ln₃NbO₇, Ln = La³⁺, Nd³⁺ or Gd³⁺) compounds, which have been reported as weberite-type structures, are not within the pyrochlore stability field. $^{3-6}$ By contrast, Ln₂(Ln'_{0.5}Nb_{0.5})₂O₇ compounds, where the ionic radius of Ln' is smaller than that of Ln, lie in or close to the stability area, and thus, as suggested by Isupov, 7 Ln₂(Ln'_{0.5}Nb_{0.5})₂O₇ are expected to crystallize in the pyrochlore structure. Therefore, to test this prediction and further understand fluorite-related superstructures, the structure of the three compounds, La₂(Yb_{0.5}Nb_{0.5})₂O₇, La₂(Er_{0.5}Nb_{0.5})₂O₇ and La₂(Dy_{0.5}Nb_{0.5})O₇, were studied here.

In terms of dielectric properties, it has been reported that weberite-type Ln_3NbO_7 exhibits a composition dependent dielectric relaxation above room temperature. ^{8–10} The relaxation temperatures are different, 47 °C, 97 °C, and 197 °C for Gd_3NbO_7 , La_3NbO_7 and Nd_3NbO_7 , respectively. It has been proposed that different relaxation temperatures may be correlated with polyhedral distortion in the crystal structure of weberite-type Ln_3NbO_7 . To explore more on the origin of this dielectric relaxation, the dielectric properties of $La_2(Ln_{0.5}Nb_{0.5})_2O_7$ ($Ln=Dy^{3+}$, Er^{3+} , and Yb^{3+}) are here investigated. This study points to the possibility of tailoring the relaxation in the fluorite-related structures via distortion of the NbO_6 octahedra.

^{*} Corresponding author. Tel.: +1 352 2730268; fax: +1 352 8463355. E-mail address: lclisa3@ufl.edu (L. Cai).

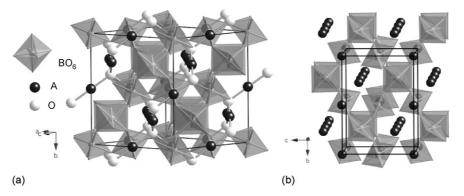


Fig. 1. BO₆ polyhedral view of (a) the pyrochlore and (b) the weberite. The line is the unit cell.

2. Experimental procedure

Polycrystalline specimens were prepared by solid state processing. The starting materials were Dy₂O₃ (Alfa, 99.99%), Er₂O₃ (Alfa, 99.99%), La₂O₃ (Alfa, 99.99%), Yb₂O₃ (Alfa, 99.9%) and Nb₂O₅ (Alfa, 99.9985%). A stoichiometric mixture of 20 g Ln₂O₃ and Nb₂O₅ was combined with 70 ml deionized water and 2 ml ammonium polyacrylate dispersant (Darvan 821 A). The slurry was ball-milled for 24 h, subsequently dried in the oven at 120 °C for 16 h, then ground and sieved through a 212 µm mesh. The powder was then placed in an alumina crucible and calcined at 1400–1500 °C. X-ray diffraction (XRD) was performed to verify phase formation using CuK_α radiation at room temperature. The resulting XRD patterns were compared with the XRD profiles of stoichiometric mixture of unreacted precursors and the JCPDS PDF of all other possible compositions of rare earth niobates such as LaNbO₄. Multiple calcinations were performed to ensure phase purity. Between each calcination stages, the powders were finely reground with mortar and pestle.

After calcination, 1–3 wt.% of PVA binder (Celvol 103) was added to assist in pellet formation. Pellets were uniaxially pressed at 150 MPa into cylindrical pellets, 3 mm in diameter and approximately 1.5 mm thick. Pellets were sintered at 1600 °C for 8 h following a binder burnout at 450 °C for 2 h. For dielectric measurements, parallel plate capacitors were made by sputtering Au/Pd electrodes on both sides of the pellets followed by a hand-painted coat of Ag-paste that was dried in air. Dielectric properties were measured using an Agilent 4284A LCR meter over the frequency range of 10 kHz–1 MHz. The measurements were performed in the temperature range of –253 °C to 22 °C with samples in a closed cycle cryogenic workstation (CTI - Cryogenics, Model 22). The measurements were conducted both on cooling and heating.

3. Results and discussion

3.1. Crystal structure

The XRD profiles of La₂(Yb_{0.5}Nb_{0.5})₂O₇ at different calcination temperatures and the stoichiometric mixture of the La₂O₃, Yb₂O₃ and Nb₂O₅ are shown in Fig. 2(a). After initial calcina-

tion at 1400 °C for 8 h, the resulting pattern showed a mixture phase of La₂(Yb_{0.5}Nb_{0.5})₂O₇, Yb₃NbO₇, and La₂O₃. After the subsequent calcination at 1500 °C for 24 h, there was no obvious La₂O₃ phase, and the Yb₃NbO₇ phase was greatly depressed, which relative intensity of the strongest peak decreased from 42% to 7%. After the third calcination at 1500 °C for 24 h, it was clearly shown that there are no unreacted La₂O₃, Yb₂O₃, Nb_2O_5 or Yb_3NbO_7 in the $La_2(Yb_{0.5}Nb_{0.5})_2O_7$ pattern. The XRD profile remained the same after additional calcination at 1500 °C for 12 h. Therefore, equilibrium was presumed after the third calcination. Initial inspection of the XRD pattern showed the five characteristic cubic fluorite reflections with 2θ ranging from 10° to 70° . However, upon further analysis, it was observed that several of the five peaks were in fact split into two reflections. The pattern also contained several weak peaks with intensities below 5% relative intensity (Fig. 2(b) and (c)).

Pseudo-Voigt functions were used to fit the diffraction peaks and extract the peak positions using Xfit program.¹¹ It was observed that the peak splitting did not increase with increasing 2θ , which ruled out the possibility of the formation of two fluorite phases. The peak positions were input into Crysfire using Treor program (an indexing program that searches for solutions by varying Miller indices in a trial-anderror manner). 12 The best solution obtained by Treor was an orthorhombic unit cell. The lattice parameters were further refined using Checkcell program.¹³ The initial lattice parameters corresponded to an orthorhombic fluorite-related lattice $(\sqrt{2}a, 2a \text{ and } \sqrt{2}a, \text{ where } a \sim 5 \text{ Å})^{14,15}$ and therefore, the XRD profile of La₂(Yb_{0.5}Nb_{0.5})₂O₇ was then compared with the XRD of fluorite-related structures including orthorhombic pyrochlore, weberite, weberite-type, orthorhombic fluorite, and zirconolite. The XRD pattern of La₂(Yb_{0.5}Nb_{0.5})₂O₇ was consistent with that of an orthorhombic pyrochlore structure (e.g. Cd₂Nb₂O₇, space group *Ima*2). Therefore, the structural parameters of orthorhombic Cd₂Nb₂O₇¹⁶ were used as initial guess for the Rietveld refinement of La₂(Yb_{0.5}Nb_{0.5})₂O₇ using Maud program¹⁷; the lattice parameters were refined to be 7.5623(13) Å, 10.766(2) Å, 7.6619(3) Å. While all experimental peaks can be assigned to the phase, the peaks with relative intensities larger than 4% are indexed and the others below 4% are indicated by diamond symbols in Fig. 2(b).

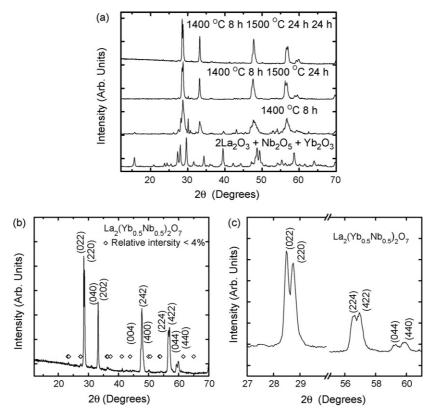


Fig. 2. (a) XRD patterns $La_2(Yb_{0.5}Nb_{0.5})_2O_7$ at different calcination temperatures and time and the mixture of La_2O_3 , Nb_2O_5 and Yb_2O_3 . (b) Indexed XRD profile of $La_2(Yb_{0.5}Nb_{0.5})_2O_7$ after calcinations at 1400 °C for 8 h and 1500 °C for 24 h and 24 h. (c) Details of the peak splitting in $La_2(Yb_{0.5}Nb_{0.5})_2O_7$.

The XRD profiles of La₂(Dy_{0.5}Nb_{0.5})₂O₇ and La₂(Er_{0.5}Nb_{0.5})₂O₇ are shown in Fig. 3. The 5 characteristic fluorite peaks were all split into two or more peak reflections. The patterns contained more weak peaks than in the case of La₂(Yb_{0.5}Nb_{0.5})₂O₇. Similar XRD analysis as described above was performed on the XRD profiles of La₂(Dy_{0.5}Nb_{0.5})₂O₇ and La₂(Er_{0.5}Nb_{0.5})₂O₇. In both cases, the minor peaks at $2\theta \sim 26^{\circ}$, 29.5° and 31° could not be indexed based on an orthorhombic pyrochlore. However, the XRD patterns were found to be consistent with the weberite-type

refinement of La₂(Dy_{0.5}Nb_{0.5})₂O₇ and La₂(Er_{0.5}Nb_{0.5})₂O₇ was thus based on the structure of Nd₃NbO₇. The lattice parameters of La₂(Dy_{0.5}Nb_{0.5})₂O₇ are 10.921(2) Å, 7.5646(12) Å and 7.7060(13) Å. The lattice parameters of La₂(Er_{0.5}Nb_{0.5})₂O₇ are 10.9220(8) Å, 7.5915(12) Å and 7.7189(5) Å. While all observed peaks can be assigned to the phases, the peaks with relative intensities larger than 8% are indexed and the other less intense peaks are indicated by diamond symbols in Fig. 3. The summary of lattice parameters is listed in Table 1.

structure (e.g. Nd₃NbO₇, space group *Cmcm*).³ Rietveld

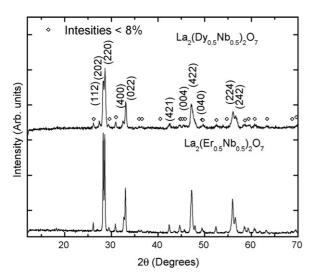


Fig. 3. XRD patterns of $La_2(Dy_{0.5}Nb_{0.5})_2O_7$ and $La_2(Er_{0.5}Nb_{0.5})_2O_7$.

3.2. Dielectric properties

The dielectric measurements have been performed both on cooling and on heating in the temperature range of $-253\,^{\circ}\text{C}-22\,^{\circ}\text{C}$. It is important to note that dielectric data measured on cooling matches well with that on heating for all the compounds. The dielectric behavior of La₂(Yb_{0.5}Nb_{0.5})₂O₇ as a function of temperature at the frequencies from 10 kHz to 1 MHz is shown in Fig. 4. The real part of permittivity is between 43.5 and 44.5 from $-253\,^{\circ}\text{C}$ to $22\,^{\circ}\text{C}$, and the imaginary part of permittivity is on the order of 10^{-1} at 1 MHz. It is observed that the dielectric behavior undergoes a frequency and temperature dependent dielectric relaxation. The permittivity increases slightly with increasing temperature from $-253\,^{\circ}\text{C}$ to about $-133\,^{\circ}\text{C}$ where a maximum is reached (\sim 44.5 at 1 MHz). The temperature, where the maximum permittivity occurs, and consequently the temperature

Table 1 Summary of lattice parameters and the temperature where the maximum of the permittivity occurs $(T(\varepsilon_m))$.

Compound	a (Å)	b (Å)	c (Å)	Unit cell volume (Å ³)	$T(\varepsilon_{ m m})$
Nd ₃ NbO ₇	10.8606(17)	7.5122(10)	7.5973(9)	619.8409	204 °C
La ₃ NbO ₇	11.1798(19)	7.6562(11)	7.7757(11)	665.5594	90 °C
Gd ₃ NbO ₇	10.6114(5)	7.5202(4)	7.5393(3)	601.6350	48 °C
$La_2(Yb_{0.5}Nb_{0.5})_2O_7$	7.5623(13)	10.766(2)	7.6619(13)	623.8339	−132 °C
$La_2(Er_{0.5}Nb_{0.5})_2O_7$	10.9220(8)	7.5915(5)	7.7189(5)	640.0076	−197°C
$La_2(Dy_{0.5}Nb_{0.5})_2O_7$	10.921(2)	7.5646(12)	7.7060(13)	636.6158	−187 °C

Fig. 4. Dielectric properties of $La_2(Yb_{0.5}Nb_{0.5})_2O_7$ at $10\,kHz,\ 100\,kHz,\ 300\,kHz,\ 500\,kHz,\ 800\,kHz$ and $1\,MHz.$

 $(T_{\rm m})$, where the peak of the imaginary part of permittivity is located, both increase with increasing frequency. However, the dielectric relaxation behavior of La₂(Yb_{0.5}Nb_{0.5})₂O₇ is different from that observed in weberite-type Gd₃NbO₇. In Gd₃NbO₇, there is no clear shift in the maxima of the dielectric permittivity and a larger variation of $T_{\rm m}$ as a function of frequency.

To better understand the phenomena, as customarily, the Arrhenius function is used to model the relaxation behavior of $La_2(Yb_0.5Nb_0.5)_2O_7$:

$$v = v_0 \exp\left[-\frac{E_a}{K_B T_m}\right] \tag{1}$$

where ν is the frequency, the pre-exponential ν_0 is the attempt jump frequency, E_a is the activation energy, and k_B is Boltzmann's constant. The resulting Arrhenius plot is presented in Fig. 5. From the linear fit, $\nu_0 = 1.2 \times 10^{14}$ Hz, and the activation energy E_a is 0.14 eV. The attempt frequency is lower than cubic pyrochlore CaO-TiO₂-Nb₂O₅ (4.6 × 10¹⁴ Hz), but higher than pyrochlore Bi_{1.5}ZnNb_{1.5}O₇ (3 × 10¹² Hz). ^{18,19} It is proposed that lighter A site cations result in a higher attempt frequency because the attempt frequency is related to that of O'-A-O' bending phonon mode. ^{18,20} The calculated attempt frequency of La₂(Yb_{0.5}Nb_{0.5})₂O₇ is also acceptable as the mass of A cations (La³⁺) is intermediate among these three compounds. The observed activation energy is smaller than that of weberite-type Gd₃NbO₇, 0.45 eV and close to B_{1.5}ZnNb_{1.5}O₇, 0.136 eV. ^{9,19}

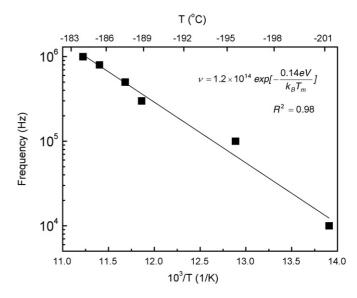


Fig. 5. Arrhenius plot of temperature at which the maximum of imaginary parts of permittivity occurs for $La_2(Yb_{0.5}Nb_{0.5})_2O_7$.

The dielectric properties of La₂(Dy_{0.5}Nb_{0.5})₂O₇ are shown in Fig. 6. The permittivity slightly increases from 54.9 to 55.2 from $-248\,^{\circ}$ C to $-187\,^{\circ}$ C, and then decreases to 51 at room temperature at 1 MHz. The imaginary part of permittivity is on the order of 10^{-1} at 1 MHz, the same as the other two compounds. This compound also exhibits a dielectric relaxation. The maximum of the permittivity shifts to a higher temperature with increasing frequency. The Arrhenius function is also used

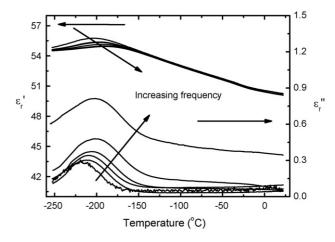


Fig. 6. Dielectric properties of $La_2(Dy_{0.5}Nb_{0.5})_2O_7$ at $10\,kHz$, $100\,kHz$, $300\,kHz$, $500\,kHz$, $800\,kHz$ and $1\,MHz$.

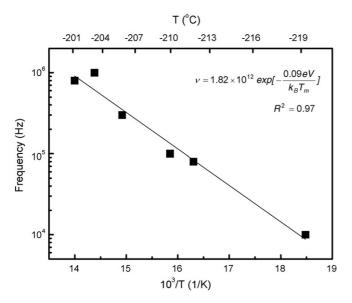


Fig. 7. Arrhenius plot of temperature at which the maximum of imaginary parts of permittivity occurs for La₂(Dy_{0.5}Nb_{0.5})₂O₇.

to model the relaxation behavior of La₂(Dy_{0.5}Nb_{0.5})₂O₇. The resulting Arrhenius plot is presented in Fig. 7. From the linear fit, $\nu_0 = 1.82 \times 10^{12}$ Hz, and the activation energy E_a is 0.09 eV. The attempt frequency of La₂(Dy_{0.5}Nb_{0.5})₂O₇ is on the same order of that of cubic pyrochlore Bi_{1.5}ZnNb_{1.5}O₇ (3 × 10¹² Hz). ¹⁹ The activation energy is below those of Bi_{1.5}ZnNb_{1.5}O₇, La₂(Yb_{0.5}Nb_{0.5})₇ and Gd₃NbO₇. ^{9,19} While this compound is neither, a dipolar glass or relaxor ferroelectric, it is important to note that similar activation energies have been observed or calculated for those type of materials, and thus the measured activation energy value (0.09 eV) is not unheard of. ^{21–23}

Fig. 8 shows the dielectric properties for La₂(Er_{0.5}Nb_{0.5})₂O₇ as a function of temperature at different frequencies from $10\,\mathrm{kHz}$ to $1\,\mathrm{MHz}$. The permittivity is between 48 and $50.4\,\mathrm{from}-253\,^\circ\mathrm{C}$ to $22\,^\circ\mathrm{C}$, and the imaginary part of permittivity is also on the order of 10^{-1} at $1\,\mathrm{MHz}$. This compound also exhibits a frequency and temperature dependent dielectric relaxation. The real part of permittivity of La₂(Er_{0.5}Nb_{0.5})₂O₇ at different frequencies becomes more dispersive near the relaxation

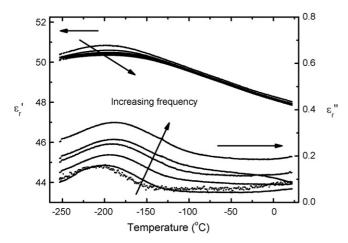


Fig. 8. Dielectric properties of La₂(Er_{0.5}Nb_{0.5})₂O₇ from 10 kHz to 1 MHz.

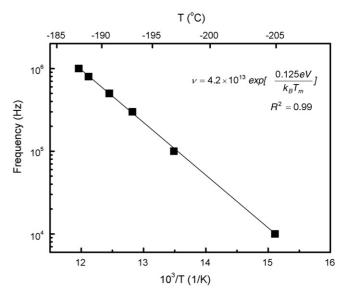


Fig. 9. Arrhenius plot of temperature at which the maximum of imaginary parts of permittivity occurs for $La_2(Er_{0.5}Nb_{0.5})_2O_7$.

temperature while above $-123\,^{\circ}\text{C}$, the variation of permittivity as a function of frequency is negligible. At the same time, the variation of the real part of permittivity as a function of temperature near the relaxation temperature is smaller than that from room temperature to $-173\,^{\circ}\text{C}$. There is no clear shift in the maxima of the dielectric permittivity with respect to frequency in La₂(Er_{0.5}Nb_{0.5})₂O₇, which is similar to Gd₃NbO₇. T_m increases with increasing frequency from 10 kHz to 1 MHz. The Arrhenius function is also used to model the relaxation behavior of La₂(Er_{0.5}Nb_{0.5})₂O₇ as shown in Fig. 9. The calculated ν_0 is 4.2×10^{13} Hz, and the activation energy E_a is 0.125 eV. These two values are close to those of La₂(Yb_{0.5}Nb_{0.5})₂O₇.

3.3. Structure–property relationship

It has been shown in the past that different degrees of polyhedral distortion in LnO_8 and NbO_6 correlate well with the

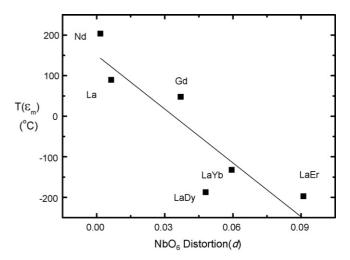


Fig. 10. NbO₆ octahedra distortion (*d*) vs. $T(\varepsilon_m)$.

different relaxation temperatures ($T(\varepsilon_{\rm m})$, the temperature where maximum real parts of permittivity occurs) in weberite-type Ln₃NbO₇. ^{1,8} Here, it may be possible that the polyhedral distortion can also explain the origin of different dielectric relaxation temperatures in Ln₂(Ln'_{0.5}Nb_{0.5})₂O₇ (the summary of $T(\varepsilon_{\rm m})$ is listed in Table 1). The distortion index by Baur²⁴ were used to characterize the polyhedral distortion:

Distortion
$$(d) = \frac{1}{n} \sum_{i=1}^{n} \frac{|d_i - d_{\text{ave}}|}{d_{\text{ave}}}$$
 (2)

where in MO_n polyhedra, d_i is the polyhedral edge length (O-O) and d_{ave} is the average polyhedral edge length. The polyhedral characterization is focused on NbO₆ octahedra since weberite-type Ln₃NbO₇ and La₂(Ln_{0.5}Nb)₂O₇ have common Nb sublattice (or NbO₆ octahedra). It is found out the distortion of NbO₆ may closely relate to the dielectric properties. As shown in Fig. 10, $T(\varepsilon_{\rm m})$ at 1 MHz decreases with increasing distortion (d) of NbO₆ with exception of La₂(Dy_{0.5}Nb_{0.5})₂O₇ (the line is for visual aid). The NbO₆ distortion may be attributed to the "openness" of the structure which causes an easier polarization of the material and thus lower $T(\varepsilon_{\rm m})$. 8,10 The attributed "openness" can be easily observed by comparing La₂(Er_{0.5}Nb_{0.5})₂O₇ and $La_2(Dy_{0.5}Nb_{0.5})_2O_7$. $La_2(Er_{0.5}Nb_{0.5})_2O_7$ has a larger unit cell volume than La₂(Dy_{0.5}Nb_{0.5})₂O₇ though the ionic radius of Er³⁺ (0.890 Å) is smaller than that of Dy³⁺ (0.912 Å).²⁵ The larger unit cell volume of La₂(Er_{0.5}Nb_{0.5})₂O₇ is probably contributed by the greater NbO₆ distortion. Therefore, La₂(Er_{0.5}Nb_{0.5})₂O₇ has a slightly lower $T(\varepsilon_{\rm m})$ $(-197 \,^{\circ}\text{C})$ than that of La₂(Dy_{0.5}Nb_{0.5})₂O₇ (-187 $^{\circ}\text{C}$). However, La₂(Yb_{0.5}Nb_{0.5})₂O₇ has a greater NbO₆ distortion than that of $La_2(Dy_{0.5}Nb_{0.5})_2O_7$, but $La_2(Yb_{0.5}Nb_{0.5})_2O_7$ has a higher $T(\varepsilon_{\rm m})$. If considered from normalized unit cell volume $(V_{\text{unit cell}}/(2 \times R_{\text{La}}^{3+} + R_{\text{Ln}}^{3+}) \text{Å}^2)$, La₂ $(Yb_{0.5}Nb_{0.5})_2O_7$ has a smaller value (195.68 Å²) than that of La₂(Dy_{0.5}Nb_{0.5})₂O₇ $(196.97 \,\text{Å}^2)$. Therefore, La₂(Dy_{0.5}Nb_{0.5})₂O₇ has a more open structure, which may result in a lower $T(\varepsilon_{\rm m})$. Thus, NbO₆ distortion appears to be an important factor to determine the $T(\varepsilon_{\rm m})$, nonetheless, it is clear that other factors such as normalized unit cell volume, dipole interactions and polarization may also play a role.

In summary, La₂(Dy_{0.5}Nb_{0.5})₂O₇ has the highest dielectric permittivity among the three compounds at all measured temperatures, La₂(Er_{0.5}Nb_{0.5})₂O₇ intermediate, and La₂(Yb_{0.5}Nb_{0.5})₂O₇ has the lowest value, which can be expected by the polarizability of Ln'³⁺ ions. The temperature at which the maximum permittivity occurs are different, $-132\,^{\circ}\text{C}$ for La₂(Yb_{0.5}Nb_{0.5})₂O₇, $-197\,^{\circ}\text{C}$ for La₂(Er_{0.5}Nb_{0.5})₂O₇ and $-187\,^{\circ}\text{C}$ for La₂(Dy_{0.5}Nb_{0.5})₂O₇.

4. Conclusion

The series of La₂(Ln' $_{0.5}$ Nb_{0.5})₂O₇ compounds were synthesized by solid state processing. These compounds have an orthorhombic fluorite-related structure. La₂(Yb_{0.5}Nb_{0.5})₂O₇ is orthorhombic pyrochlore, and La₂(Er_{0.5}Nb_{0.5})₂O₇ and La₂(Dy_{0.5}Nb_{0.5})₂O₇ are weberite-type. Their dielectric properties were also investigated. The three compounds show

temperature and frequency dependent dielectric relaxation. Arrhenius function was used to model the dielectric relaxation. The calculated attempt frequency is $1.2 \times 10^{14}\,\mathrm{Hz}$, $4.2 \times 10^{13}\,\mathrm{Hz}$ and $1.82 \times 10^{12}\,\mathrm{Hz}$ for $\mathrm{La_2(Yb_{0.5}Nb_{0.5})_2O_7}$, $\mathrm{La_2(Er_{0.5}Nb_{0.5})_2O_7}$ and $\mathrm{La_2(Dy_{0.5}Nb_{0.5})_2O_7}$, respectively. The activation energy is $0.14\,\mathrm{eV}$, $0.125\,\mathrm{eV}$ and $0.09\,\mathrm{eV}$ for $\mathrm{La_2(Yb_{0.5}Nb_{0.5})_2O_7}$, $\mathrm{La_2(Er_{0.5}Nb_{0.5})_2O_7}$ La₂(Dy_{0.5}Nb_{0.5})₂O₇, respectively. It is also found out that the NbO₆ distortion correlates with $T(\varepsilon_\mathrm{m})$.

Acknowledgements

The authors would like to thank the Major Analytical Instrumentation Center (MAIC) at the University of Florida, and the financial support by the U.S. National Science Foundation for funding CAREER grant (DMR-0449710 and CBET 0730900).

References

- Cai, L. and Nino, J. C., Complex Ceramic Structures. 1. Weberites. Acta Crystallographica Section B-Structural Science, 2009, B65, 269–290.
- Subramanian, M. A., Aravamudan, G. and Rao, G. V. S., Oxide pyrochlores—a review. Progress in Solid State Chemistry, 1983, 15, 55–143.
- 3. Rossell, H. J., Fluorite-related phases Ln₃MO₇, Ln=rare-earth, Y or Sc, *M*=Nb, Sb, or Ta.2. Structure determination. *Journal of Solid State Chemistry*, 1979, **27**, 115–122.
- Rooksby, H. P. and White, E. A. D., Rare-earth niobates and tantalates of defect fluorite-type and weberite-type structures. *Journal of the American Ceramic Society*, 1964, 47, 94–96.
- Sirotinkin, V. P., Evdokimov, A. A. and Trunov, V. K., Parameter improvement of nucleus of Ln₃NbO₇ and Ln₃TaO₇ compounds. *Zhurnal Neorganicheskoi Khimii*, 1982, 27, 1648–1651.
- Kovyazina, S. A., Perelyaeva, L. A., Leonidov, I. A. et al., High-temperature structural disorder in R₃NbO₇. Journal of Structural Chemistry, 2003, 44, 975–979.
- Isupov, V. A., Oxide pyrochlores and their phase transitions. Ferroelectrics Review, 2000, 2, 115–168.
- Cai, L., Guzman, J., Perez, L. et al., Phase formation and dielectric properties
 of Ln₃NbO₇ (Ln = rare earth elements). In Solid-State Chemistry of Inorganic Materials VI (Materials Research Society Symposium Proceeding),
 vol. 998E, 2007. pp. 0988-qq0901-0904.
- Cai, L. and Nino, J. C., Structure and dielectric properties of Ln₃NbO₇ (Ln=Nd, Gd, Dy, Er, Yb and Y). *Journal of the European Ceramic Society*, 2007, 27, 3971–3976.
- Astafyev, A. V., Sirotinkin, V. P. and Stefanovich, S. Y., Phase-transitions in the compounds Sm₃NbO₇ and Gd₃NbO₇ with a fluorite-like structure. *Kristallografiya*, 1985, 30, 603–604.
- Cheary, R. W. and Coelho, A. A., Programs XFIT and FOURYA. deposited in CCP14 Powder Diffraction Library. Engineering and Physical Sciences Research Council, Daresbury Laboratory, Warrington, England, 1996.
- 12. Shirley, R., The CRYSFIRE System for Automatic Powder Indexing., 2004.
- 13. Laugier, J. and Bochu, B., LMGP Suite for Windows Checkcell., 2004.
- Fischer, M., Malcherek, T., Bismayer, U. et al., Structure and stability of Cd₂Nb₂O₇ and Cd₂Ta₂O₇ explored by ab initio calculations. *Physical Review B*, 2008, 78, 014108.
- Ivanov, S., Tellgren, R. and Rundlof, H., Structural aspects of ferroelectric phase transitions in the complex metal oxides A₂Sb₂O₇ (A = Pb, Sr, Ca) with weberite structure. *Epdic*, 1998, 5(Pts 1 and 2), 768–772, 278-2.
- Cordfunke, E. H. P. and Ijdo, D. J. W., Ba₂U₂O₇—crystal-structure and phase-relationships. *Journal of Physics and Chemistry of Solids*, 1988, 49, 551–554.
- Lutterotti, L., Matthies, S. and Wenk, H.-R., MAUD: a friendly Java program for material analysis using diffraction. *IUCr: Newsletter of the CPD*, 1999, 21, 14–15.

- Roth, R. S., Vanderah, T. A., Bordet, P. et al., Pyrochlore formation, phase relations, and properties in the CaO-TiO₂-(Nb,Ta)₂O₅ systems. *Journal of Solid State Chemistry*, 2008, 181, 406–414.
- Nino, J. C., Lanagan, M. T. and Randall, C. A., Dielectric relaxation in Bi₂O₃-ZnO-Nb₂O₅ cubic pyrochlore. *Journal of Applied Physics*, 2001, 89, 4512–4516.
- Nino, J. C., Lanagan, M. T., Randall, C. A. et al., Correlation between infrared phonon modes and dielectric relaxation in Bi2O3-ZnO-Nb2O5 cubic pyrochlore. Applied Physics Letters, 2002, 81, 4404

 –4406.
- Kamba, S., Bovtun, V., Petzelt, J. et al., Dielectric dispersion of the relaxer PLZT ceramics in the frequency range 20 Hz-100 THz. *Journal of Physics-Condensed Matter*, 2000, 12, 497–519.
- Binder, K. and Young, A. P., Spin glasses: experimental facts, theoretical concepts, and open questions. *Reviews of Modern Physics*, 1986, 58, 801.
- Bhattacharya, S., Nagel, S. R., Fleishman, L. et al., Dielectric susceptibility of (KBr)_{0.50}(KCN)_{0.50}—is it a dipole glass. *Physical Review Letters*, 1982, 48, 1267–1270.
- Baur, W. H., Geometry of polyhedral distortions—predictive relationships for phosphate group. *Acta Crystallographica Section B-Structural Science* B, 1974, 30, 1195–1215.
- Shannon, R. D., Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. *Acta Crystallographica Section A*, 1976, 32, 751–767.